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INTRODUCTION: Human beings are equipped
withmultiple senses (sight, hearing, smell, taste,
touch, and proprioception) to help them to react
properly to their environment. The human body
is composed of trillions of cells that similarly
require multiple sensations to fulfill their task
in specific tissues. From a cellular perspective,
the three-dimensional (3D) tissue microenvi-
ronment is a crowded place in which cells ex-
perience a multitude of physical constraints
and mechanical forces. These conditions can
lead to cell shape changes—for example, as ob-
served when motile cells squeeze through tight
spaces or when cells deform in densely packed
tissue regions. To guarantee tissue integrity and
homeostasis, cells need to be able to respond
to these mechanical challenges in their tissue
microenvironment, both in the adult organism
and during embryonic development. How cells
can measure their own shape and adapt their
dynamic behavior to the physical surroundings
remains an open question.

RATIONALE: The actomyosin cytoskeleton is a
structural scaffold within cells that controls
mechanical cell properties anddynamic cellular
processes such as cell migration. Cytoskeletal

networks can contract and thereby generate
force by using the activity of myosin II motor
proteins. Cell contractility influences themode
and speed of cell migration. Various cell types
have been observed to switch to a highly con-
tractile and fast amoeboid cell migration type
in constrained environments. This suggests
the presence of a conserved mechanosensitive
pathway capable of translating mechanical cell
deformations into adaptive cytoskeletal arrange-
ments that allow cells to react dynamically to
changes in their tissue microenvironment.

RESULTS: Here, we show that the nucleus, the
biggest organelle in the cell, translates cell shape
changes into a deformation signal regulating
cell behavior.We found that variable cell squeez-
ing defines the specific set point of cell contrac-
tility, with increased cell deformation leading
to higher cortical myosin II levels and promot-
ing fast amoeboid cell migration. This adapt-
ive cellular response to deformation was rapid
(<1 min), stable over time (>60 min), and re-
versible upon confinement release. We found
that changes in cell behavior were associated
with nucleus stretch and unfolding of the
inner nuclear membrane (INM), supporting

the idea that the nucleus functions as a fast
mechanical responder for sensing cell shape
variations. We show that INM unfolding trig-
gered a calcium-dependentmechanotransduc-
tion pathway via the activation of cytosolic
phospholipase A2 (cPLA2) andmetabolite pro-
duction of arachidonic acid (AA) that regulates
myosin II activity. This establishes the nucleus
as an intracellular mechano-gauge that mea-
sures shape deformations and directly controls
morphodynamic cell behavior. Furthermore,
we found that the combination of nuclear
deformation and intracellular calcium levels,
regulated by nuclear positioning, allows cells
to distinguish distinct shape deformations
and adapt their behavior to changing tissue
microenvironments.

CONCLUSION: Here, we show that the nucleus
acts as a central hub for cellular proprioception,
which, in amanner similar to howwe sense our
body posture andmovement, enables single cells
to precisely interpret and respond to changes
in their 3D shape. The rapid increase in cell
contractility and migration competence upon
cell squeezing equips cells with a rapid “evasion
reflex”: In constrained environments, cells
polarize andacquire a rapidmigratoryphenotype
that enables cells to move away and squeeze out
from tight spaces or crowded tissue regions. The
nucleus thus allows cells to decode changes
in their shape and to adjust their behavior to
variable tissue niches, relevant for healthy and
pathological conditions.▪
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The nucleus acts as an elastic mechanotransducer of cellular shape deformation and controls dynamic behavior. Cell shape changes induce inner nuclear
membrane unfolding and activation of the cPLA2-AA pathway. This transduces mechanical nucleus stretch into myosin II recruitment to the cell cortex regulating actin
cytoskeleton contractility and cellular behavior. High contractility levels further lead to motile cell transformation and initiate amoeboid cell migration.

on O
ctober 15, 2020

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 

http://science.sciencemag.org/


RESEARCH ARTICLE
◥

CELL BIOLOGY

The nucleus measures shape changes for cellular
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The physical microenvironment regulates cell behavior during tissue development and homeostasis. How
single cells decode information about their geometrical shape under mechanical stress and physical
space constraints within tissues remains largely unknown. Here, using a zebrafish model, we show that
the nucleus, the biggest cellular organelle, functions as an elastic deformation gauge that enables cells
to measure cell shape deformations. Inner nuclear membrane unfolding upon nucleus stretching
provides physical information on cellular shape changes and adaptively activates a calcium-dependent
mechanotransduction pathway, controlling actomyosin contractility and migration plasticity. Our data
support that the nucleus establishes a functional module for cellular proprioception that enables cells to
sense shape variations for adapting cellular behavior to their microenvironment.

T
he three-dimensional (3D) shape of an or-
ganism is built by active force-generating
processes at the cellular level and the
spatiotemporal coordination of morpho-
dynamic cell behavior. Contractility of

the actomyosin cell cortex represents a major
cellular force production mechanism under-
lying cellular shape change (1), cell polariza-
tion (2), and active cell migration dynamics
(3). Contractility levels are regulated by the
activity of nonmuscle myosin II motor pro-
teins (4) and are precisely controlled to tune
single-cell and tissue morphodynamics dur-
ing development (5, 6) and tissue homeostasis
and disease in the adult organism (7, 8). Still,
mechanisms that regulate the set-point level
of cortical contractility on the single-cell level
remain poorly understood.
To adjust cortical contractility levels, cells

need to make quantitative measures of their
mechanochemical 3D tissue microenviron-
ment and translate this information into a
defined morphodynamic output response.
Morphogens that act as chemical information
carriers during embryogenesis have attracted
major attention (9), modulating cytoskeletal
and cellular dynamics via receptor signaling
pathways that tune protein activities (such as
phosphorylation states) and/or protein expres-

sion levels. In contrast, physical parameters
of the 3D tissue niche and mechanical forces
gain importance as regulators of cellular mor-
phodynamics andmyosin II–dependent cortical
contractility levels (10, 11). In vivo, mechanical
cell deformation and cellular packing density in
crowded tissue regions has been shown to in-
fluence major morphodynamic processes such
as cortical actomyosin contractility (12, 13), cell
division (14–17), and cell extrusion and invasion
(18). Ex vivo studies have provided further evi-
dence on the single-cell level that physical cell
deformation is sufficient to modulate cortical
myosin II localization and motor protein ac-
tivity (19, 20) and influence morphodynamic
cell behavior (21, 22).
A recent example is the identification of a

fast amoeboid migration mode, called stable-
blebmigration, that is triggered by an increase
in cortical contractility via genetic or physical
cell perturbation (23). This morphodynamic
migration switch was shown to be present in
both undifferentiated and lineage-committed
embryonic progenitor cells and was also iden-
tified in various other cell types (24–29). This
finding suggests that a conserved, albeit un-
known, mechanosensitive cellular signaling
module regulates myosin II–based cortical
contractility and motile cell transformation
depending on cellular shape deformations in
constrained tissue microenvironments.

Cell contractility levels increase upon cell
confinement and regulate migration plasticity

To approach the question of how cells can
measure and adaptively respond to physical
cell shape changes within their 3D tissue mi-
croenvironments, we established a synthetic
approach that enables the mimicking of me-

chanical cell deformations in controlled 3D
microconfinement assays (30). Primary pro-
genitor stem cells were isolated from blas-
tula stage zebrafish embryos and cultured in
planar confinement assays of defined height
to mimic various cell deformation amplitudes
(fig. S1A). Lowering confinement height in
discrete steps increased cell deformation,
which scaled nonlinearly with a pronounced
enrichment of myosin II at the cell cortex re-
lative to cortical actin accumulation (Fig. 1, A
and B; fig. S1, B to D; and movie S1). Cortical
accumulation of myosin II was accompanied
by an increase in cellular bleb size (fig. S1E and
movie S1), indicative of an active increase in
cortical contractility levels depending on con-
finement height. Myosin II relocalization to
the cell cortex in confined cells was rapid [half-
time (t1/2) < 1 min] (Fig. 1, C and D) and tem-
porally stable under confinement. Distinct pla-
teaus of cortical myosin II enrichment were
evident, with myosin II relocalization increas-
ing for larger cell deformations (Fig. 1C). A cell
confinement height smaller than 7 mm caused
a pronounced increase in cell lysis during com-
pression, defining a maximal threshold defor-
mation of ~30% of the initial cell diameter (d),
given a blastula cell size of d ~ 25 mm (fig. S3H).
Overall, these data support that the physical
microenvironment defines a specific set-point
level of cortical contractility as a function of
cell deformation.
We have previously shown that an increase

in myosin II–mediated cortical contractility
induced a stochastic motility switch into a
highly motile amoeboid migration phenotype
called stable-bleb mode (23). In accordance
with these results, rapid cortical myosin II en-
richment in confinement resulted in spontane-
ous cell polarization which initiated amoeboid
cell migration (Fig. 1, E and F; fig. S1, F and G;
andmovies S2 and S3). Polarized cells revealed
characteristic actomyosin density gradients
from the cell front toward the rear, accom-
panied by fast retrograde cortical flows (fig.
S1H andmovies S2 and S3); these cortical flows
have been shown to power fast amoeboid mi-
gration in polarized cells (23, 31). Meanwhile,
unpolarized cells showed random tumbling
with minimal net translocation (figs. S1, F and
G, and S2A). These data support that physical
cell deformation in confinement is sufficient
to increase actomyosin network contractility
and trigger rapid amoeboid cell migration.
Release of cell compression induced a rapid

relocalization of cortical myosin to the cyto-
plasm (Fig. 1G and fig. S1I), followed by a rapid
loss of cell polarization and related migratory
capacity (fig. S1G and movie S4). Interfering
with myosin II activity via blebbistatin in-
hibited cell polarization and associated cell
motility in confinement (Fig. 1E and fig. S1J),
in accordance with a necessary role of myosin
II–based contractility in cell polarization and
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migration induced by mechanical cell shape
deformation. Cortical myosin II enrichment
and cell polarization occurred independently
of caspase activation (fig. S1K), supporting
that morphodynamic changes are not caused
by the activation of proapoptotic signaling
programs. Furthermore, transcriptional in-
hibition did not block cortical myosin II re-
localization and cell polarization (fig. S1L),
indicating that a nongenetic program is reg-
ulating cellular morphodynamics under cell
compression.
During gastrulation, blastoderm embryonic

progenitor stem cells specify into different
lineages (ectoderm, mesoderm, endoderm) and
acquire distinct biomechanical and morpho-
dynamic characteristics, driving germ layer
positioning and shape formation of the em-

bryo (32, 33) (Fig. 2, A and B). To test the
mechanosensitive response to cell deforma-
tion at later developmental stages, we obtained
different progenitor cell types from embryos
via genetic induction or using endogenous
reporter lines. Under confinement, nonmotile
ectodermal cells rapidly polarized and started
to migrate in an amoeboid stable-bleb mode.
Similarly, mesendodermal cells underwent
a fast mesenchymal-to-amoeboid transition
in confinement (Fig. 2, B to D; fig. S2A; and
movies S3 and S5). The fraction of polarized
stable-bleb cells and their cell speed were com-
parable for different progenitor cell types in
confinement (fig. S2, B and C). Together, these
results support that physical cell shape de-
formation in confined tissue microenviron-
ments activates a mechanosensitive signaling

pathway regulating adaptive cortical contrac-
tility levels and morphodynamic migration plas-
ticity in pluripotent and lineage-committed
embryonic stem cells.

The cell nucleus is a mechanosensor of large
cell shape deformation

We next sought to identify potential mech-
anisms that control cellular shape deforma-
tion sensing and adaptive morphodynamic
behavior. Cortical myosin II relocalization and
amoeboid cell transformation occurred on pas-
sivated confinement surfaces independently
of adhesive substrate coating (figs. S2, A and C,
and S3A) and cell-cell contact formation (fig.
S3B). These observations support that the ac-
tivation of cortical contractility in confinement
occurs independently of adhesion-dependent
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Fig. 1. Cell deformation in confined environments defines cell contractility,
polarization, and fast amoeboid cell migration. (A) Relative cortical myosin II
enrichment for decreasing confinement height in unpolarized progenitor cells
[N = 477 cells (suspension, unconfined); N = 56 (18 mm); N = 35 (16 mm);
N = 103 (13 mm); N = 131 (10 mm); N = 49 (8.5 mm); N = 348 (7 mm)]. Signif-
icance values are with respect to the suspension condition. Black line shows a
monoexponential fit with offset to the data. (B) Exemplary confocal fluorescence
images of control progenitor stem cells in suspension (Susp.) and indicated
confinement heights expressing Myl12.1-eGFP (myosin II). White arrows point
to cellular blebs. (C) Temporal dynamics of cortical myosin II recruitment upon
mechanical confinement at time (t) = 0 at the indicated heights. Thick lines
correspond to the mean, and areas correspond to the standard error of the

mean (SEM). N > 50 cells for all conditions. (D) Exemplary cross-sectional
time-lapse images of myosin II–eGFP–expressing cells under 7 mm confinement.
(E) Percentage of polarized motile stable-bleb cells in suspension at indicated
confinement heights and myosin II inhibition (blebbistatin) at 7 mm (each
N > 500). (F) Representative time-lapse images of a myosin II–eGFP–expressing
cell undergoing spontaneous stable-bleb cell polarization and migration initia-
tion. Dashed line shows the stable-bleb cell front and red arrow points in
the direction of movement. (G) Relative cortical myosin II enrichment during
reversible cell confinement. Cells were confined for 15 min before confinement
was released, and cortical myosin II levels were measured at t0 (0 to 5 min)
and at t0 + Dt (30 to 60 min) after release. h, height. ***P < 0.0001,
**P < 0.001; n.s., not significant. All scale bars, 10 mm.
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mechanotransduction pathways (34). The
temporal characteristics of myosin II relo-
calization dynamics in confined cells showing
a fast, stable, and reversible accumulation of
cortical myosin II (Fig. 1, C and D) suggested
that shape deformation is sensed by a non-
dissipative cellular element that can rapidly
measure and convert gradual cellular shape
changes into stable contractility response
levels.
The actomyosin cytoskeleton itself has been

implicated to act as a mechanosensitive net-
work (20), but it generally limits deformation
sensing due to rapid turnover of the cell cortex
(35). To test for the activation of mechanosen-
sitive ion channels, we used gadolinium and
GsMTx4, inhibitors of stretch-activated chan-
nels, with GsMTx4 having been shown to block
the tension-dependent Piezo1 channel, which
is activated after confinement of human can-
cer cells (36). Treatment with both inhibitors
did not result in a significant reduction in
cortical myosin II accumulation under cell
deformation (fig. S3C), despite the presence
of functional Piezo1 channels in these cells,
as validated with the Piezo1-specific agonist
Yoda (fig. S3D).
Notably, we observed that cortical myosin II

enrichment only started to occur belowa thresh-
old confinement height (~13 mm) that corre-
lated with the spatial dimension of the nucleus
(Fig. 3A and fig. S3H). Analyzing nuclear shape
change versus cortical myosin accumulation
revealed a biphasic behavior, with a first phase
inwhich the nucleus diameter remained nearly
constant and no myosin II accumulation was
observed, and a second phase in which the
relativemyosin accumulation linearly increased
with the relative change in nucleus diameter
(Fig. 3, A and B, and fig. S3E). In accordance
with this observation, we expected a propor-

tional change of nuclear surface ruffling upon
deformation of an initially spherical nucleus.
Measuring of nuclear surface folding by the
expression of the inner nuclear membrane
(INM) protein Lap2b-eGFP (enhanced green
fluorescent protein–tagged lamina-associated
polypeptide 2) revealed thatmembrane ruffling
was continuously reduced when nucleus de-
formation started to occur at a threshold de-
formation of ~13 mm (Fig. 3, C to E; fig. S3F;
andmovie S6). In addition, analysis of nucleus
membrane curvature for confined versus
control cells in suspension indicated INM
surface unfolding (Fig. 3, F and G, and
movie S6), with no significant difference in
total nuclear volume and surface (fig. S3G).
Nucleus deformation further correlated with
cortical myosin II accumulation in the en-
dogenous in vivo context during the blastula-
to-gastrula transition, when a gradient of
cellular packing density appears from the
animal pole toward the lateral margin (37)
(fig. S2, D and E).
To further probe the dependence of cortical

myosin II accumulation on nucleus size, we
dissociated primary embryonic stem cells from
early and late blastula stages, as cells reduce
their size in consecutive rounds of early cleav-
age divisions (fig. S3H). Deforming cells of dif-
ferent sizes under similar confinement heights
revealed that myosin II accumulation is cor-
related with relative changes in nucleus de-
formation but not cell deformation (Fig. 4, A
and B). To test a functional role of the nucleus
in regulating cortical contractility levels during
cellular shape deformation, we analyzed cor-
tical myosin II accumulation in mitotic cells
that present a disassembled nuclear envel-
ope. To arrest cells in mitosis and further in-
crease the percentage of mitotic cells, we used
nocodazole, a microtubule-disrupting drug.

Confinement of mitotic cells (either sponta-
neous or nocodazole-induced) did not trigger
a cortical myosin II accumulation at a 7 mm
confinement height as it did in interphase
blastula cells (Fig. 4C) or cell polarization (fig.
S3I). However, mitotic cells did accumulate
myosin II (Fig. 4D) and polarize (fig. S3I) in
response to lysophosphatidic acid (LPA), a
potent activator of Rho/Rho-associated coiled-
coil containing protein kinase (ROCK) sig-
naling, which has previously been shown to
induce rapid cortical myosin II enrichment
and amoeboid migration in zebrafish em-
bryonic progenitor stem cells (23). During
entry into mitosis, cells gradually lost cor-
tical myosin II accumulations, which tem-
porally correlated with the start of nuclear
envelope breakdown (Fig. 4E). Altogether,
these data show that myosin II enrichment
is associated with nuclear shape deformation
and stable INM membrane unfolding. This
suggests that the nucleus functions as a con-
tinuous nondissipative sensor element of cell
deformation involved in the mechanosensitive
regulation of cortical contractility levels and
cellular morphodynamics.
To directly test biophysical characteristics of

the nucleus, we developed an assay to probe
intracellular nucleus mechanics by optical
tweezermeasurements. For this purpose, latex
beads of 1 mm size were injected into one-cell-
stage embryos that dispersed across embryonic
cells during early cleavage cycles and acted
as intracellular force probes to measure rheo-
logical properties of the nucleus (fig. S4A).
Trapezoidal loads were measured for cells in
suspension and under 10-mm confinement
(fig. S4, B to E). The recorded force followed
the fast initial indentation to reach a peak
force before it relaxed to a nonzero constant
force-plateau. The relaxation time remained
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Fig. 2. Physical confinement triggers amoeboid migration in different cell
lineages. (A) Sketch of the developing zebrafish embryo at sphere [4 hours post-
fertilization (hpf)], shield (6 hpf), and 75% epiboly (8 hpf) stage. (B) Exemplary
confocal and bright-field images of mesodermal cells in vivo expressing Lyn-
Tomato (magenta, membrane) and GFP (green) under the mezzo promoter (left),
induced mesendodermal cells in vitro plated on a 2D fibronectin-coated surface
(middle), and under 7 mm confinement (right). Asterisk indicates stable-bleb cell

front. (C) Relative cortical myosin II intensity for mesendodermal and ectodermal
progenitor cells in control suspension and confinement conditions. (D) Exemplary
confocal images of stable-bleb polarized (top) and nonpolarized (bottom)
progenitor cell types expressing myosin II–eGFP under 7 mm confinement.
From left to right: ectoderm, endoderm, and mesoderm cells. Dashed line and
yellow asterisks indicate the stable-bleb cell front, and red arrows indicate the
direction of cell migration. ***P < 0.0001. All scale bars, 10 mm.
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unchanged between suspension (t = 6.08 ±
1.1 s) and confined cells (t = 4.00 ± 0.6 s) (fig.
S4, D to H), suggesting a passive but rapid
(second-scale) relaxation of a viscous compo-
nent. The force-plateau on a long time scale
corresponds to an elastic component of the
nucleus (fig. S4I), in line with previous mea-
surements that identified an elastic behavior
of the nucleus (38) that can act as a cellular
strain gauge. In addition, we observed that
INM unfolding was stable over a measure-
ment period of 60 min (fig. S4J) under me-
chanical cell deformation, supporting that
INM stretch does not relax over extended time
periods.

Nuclear deformation activates a
calcium-dependent mechanotransduction
pathway regulating myosin II activity

We next aimed to identify nucleus deformation–
dependent signaling pathways that link the
spatiotemporal correlation of nuclear shape
changes with fast myosin II activation and

changes in morphodynamic cell behavior. Our
previous observations suggested that nucleus
deformation and associated mechanosensi-
tive processes at the INM interface are in-
volved in the regulation of myosin II activity
and cortical contractility. Among a set of mol-
ecules tested under confinement conditions
(table S1), we identified cytosolic phospho-
lipase A2 (cPLA2) as a key molecular target
mediating the activation of cortical myosin
II enrichment (Fig. 5, A and B) and amoeboid
cell transformation under cell compression
(Fig. 5C). Inhibition of cPLA2 by pharmacolog-
ical interference using pyrrophenone robustly
blocked corticalmyosin II relocalization under
varying confinement heights (fig. S5A). Fur-
thermore, we observed a significant reduc-
tion of cortical myosin II levels in confined
cells by morpholino (MO) interference with
cPLA2, while overexpression of cPLA2mRNA
rescued the morphant phenotype and led to
a myosin II accumulation comparable to that
in control cells (Fig. 5, A and B). Residual

myosin II activation in cells obtained from
morphant embryos suggests a maternal con-
tribution of cPLA2 protein in the early embryo
that cannot be targeted by MO interference.
To exclude that other mechanisms, such as
structural changes in the actin network, pre-
vent cortical myosin II relocalization under
cPLA2 inhibition, we added LPA as an exog-
enous myosin II activator to cPLA2 inhibited
cells. Under this condition, myosin II was
strongly accumulated at the cell cortex (fig.
S5, B and C) and induced cell polarization as-
sociated with amoeboid motility (Fig. 5C).
These data support that myosin II can be ac-
tivated by extrinsic pathways when cPLA2 sig-
naling is inhibited and remains competent to
bind to the cell cortex.
Recent work identified that the activation

of proinflammatory signaling during leuko-
cyte recruitment to wounding sites is regu-
lated by tension-sensitive binding of cPLA2 to
the INM (39).We thus tested a role of cPLA2 in
the nucleus by generating a modified cPLA2
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construct containing a nuclear export sequence
(NES).Using leptomycinB as ablocker of nuclear
export, we observed an accumulation of cPLA2-
NES-GFP within the nucleus, showing a con-
comitant increase of cortical myosin II levels
in confined cells (Fig. 6, A and B). These data
support that cPLA2 localization in the nucleus
is required for myosin II enrichment at the
cortex.
We further validated that cortical myosin II

enrichment in cells of different sizes (early
versus late blastula cells) and different em-
bryonic cell lineages (mesendoderm or ecto-
derm cells) depends on the activation of cPLA2

signaling. Pharmacological inhibition of cPLA2

activity blocked cortical myosin II relocalization
in confined cells (Fig. 6C) and strongly reduced
cell polarization and associated migration com-
petence (fig. S2B), supporting a consistent role
of cPLA2 activation under physical cell defor-
mation across early to late developmental stages.
These data support that activation of cPLA2

signaling in the nucleus mediates adaptive cyto-
skeletal and morphodynamic behavior under
cell deformation.
Arachidonic acid (AA) is the primary cleav-

age product generated by cPLA2 activity (40).

To directly validate whether nucleus deforma-
tion in confinement triggers cPLA2 activity, we
measured the release of AA by Raman spec-
troscopy. The analysis of Raman spectra con-
firmed the specific production of AA in confined
cells (Fig. 6D and fig. S5E), with the increase
in AA production in confined versus control
cells being specifically blocked in the pres-
ence of cPLA2 inhibitor (Fig. 6E). We further
observed that AA was exclusively detected in
the cytoplasm of confined cells, which suggests
that AA is directly released from nuclear mem-
branes into the cytoplasm. These data support
that cell confinement leads to enhanced cPLA2

activity and production of AA associated with
INM unfolding and stretching of the nucleus
surface.
AA has been implicated in both the direct

(41) and indirect regulation of myosin II ac-
tivity via protein phosphorylation (42). We
tested the involvement of the Rho/ROCK and
myosin light chain kinase (MLCK) as key reg-
ulators of myosin II activity (4). MLCK inhibi-
tion showed no significant effect on myosin II
enrichment in confined cells, whereas a pro-
nounced reduction of cortical myosin II recruit-
ment was observed when using staurosporine,

a general kinase inhibitor, and under spe-
cific inhibition of Rho activity (Fig. 6F). Using
a RhoA–Förster resonance energy transfer
(FRET) sensor further indicated an increased
RhoA activity in confined cells versus control
cells in suspension, which was significantly
reduced in the presence of cPLA2 inhibitor in
confined cells (fig. S5F). These data support
that AA production by cPLA2 activity initiates
upon nuclear envelope unfolding, regulating
phosphorylation-dependent myosin II activ-
ity at the cell cortex. AA and its metabolic
products have been widely implicated in para-
and autocrine signaling functions involving
G protein–coupled receptors (43). We assessed
the role of AA product release by compressing
cells directly under micropillars at a height of
~7 mm, leading to confined and nonconfined
cells in close proximity (fig. S5G). Whereas
confined cells showed high levels of cortical
myosin II and amoeboid cell transformation,
nonconfined cells in direct contact revealed
no alterations in cortical myosin II and cel-
lular morphodynamics (fig. S5H). These re-
sults support that cPLA2-dependent myosin II
activation does not depend on the release
of diffusible signals and regulates cellular
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morphodynamics via a cell-autonomous in-
crease of cortical contractility under cell de-
formation in confinement.
Interference with intracellular calcium

levels by addition of BAPTA-AM [1,2-bis(2-
aminophenoxy)ethane-N,N,N′,N′-tetraacetic
acid acetoxymethyl ester] or in combination
with cPLA2 inhibitor blocked myosin II en-
richment in confined cells without altering
cortical myosin II levels in unconfined con-
trol cells (fig. S5I). LPA stimulation of BAPTA-
AM–treated cells confirmed that myosin II
can be activated by the Rho-ROCK signaling
pathway in the absence of intracellular cal-
cium and remains competent to bind the cell
cortex (fig. S5C). Similarly, chelating extra-
cellular calcium reduced cortical myosin II
relocalization, while depletion of internal cal-
cium stores using thapsigargin led to a slight
increase in myosin II enrichment in confine-
ment (fig. S5I). The addition of ionomycin
showed that high intracellular calcium levels,
in the absence of cellular shape deformation,
were not sufficient to evoke AA production
(fig. S5J) and cortical myosin II enrichment
(fig. S5, B and D). This suggests that intracel-
lular calcium has a permissive function for
cPLA2 association with the INM and increasing

cortical contractility under cell confinement.
Our findings are in line with the observation
that cPLA2 contains a calcium-dependent C2
domain that modulates protein binding to
the INM (44–46), which has been shown to be
further enhanced and stabilized by mechanical
stretching of the nucleus (39). Consistently,
cPLA2 showed a transient localization to the
INM in the presence of ionomycin, while addi-
tional mechanical stretch due to hypotonic
swelling or cell confinement induced a stable
association with the INM (fig. S3, J and K).

INM unfolding and nucleus positioning
enable the decoding of different types
of cell shape deformations

To study whether INM unfolding under cell
confinement was sufficient to trigger cPLA2

activity, we measured cortical myosin II lev-
els and amoeboidmigration competence under
hypotonic swelling of cells. Quantification of
nuclear shape parameters (size, volume, and
surface) revealed that hypotonic swelling in-
duced comparable nuclear surface expansion
and INM unfolding as nucleus deformation
under a confinement height of 7 mm (fig. S6,
A to C). Cortical myosin II levels in hypo-
tonic conditions (Fig. 7A and movie S7) and

associated changes in bleb size (fig. S6D) and
cell polarization rate (Fig. 7C) were signifi-
cantly lower than those of cells deformed at
a 7 mm confinement height. These observa-
tions suggest that nuclear envelope unfold-
ing alone is not sufficient to trigger high
levels of cortical myosin II enrichment un-
der isotropic cell stretching in hypotonic con-
ditions versus anisotropic cell deformation in
confinement.
Comparing intracellular calcium levels be-

tween deformed cells in confinement and under
hypotonic conditions showed a pronounced
increase in intracellular calcium concentra-
tions in confined cells, with a specific calcium
increase in the cell nucleus (Fig. 7B and fig.
S6E). Ectopically increasing intracellular cal-
cium levels under hypotonic conditions via
the addition of ionomycin led to a pronounced
and rapid increase in cortical myosin II en-
richment in a cPLA2-dependent manner (fig.
S6F and movie S7) that triggered spontaneous
cell polarization (Fig. 7, C and D, and fig. S6G).
As in confined cells, cell polarization under
this conditionwas associatedwith a rapid trans-
formation of nonmotile cells into a highly
motile stable-bleb amoeboid mode with fast
migration speed under confinement ex vivo
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and in vivo (Fig. 7E; fig. S6, H, I, and M; and
movies S7 and S8). Raman spectroscopy to
directly measure cPLA2 activity confirmed
that hypotonic stress increased AA levels (fig.
S5K) in a cPLA2-dependent manner (fig. S5L),
with addition of ionomycin in hypotonic con-
ditions further increasing AA production (fig.
S5M). Furthermore, relative measured AA lev-
els directly correlated with cortical myosin II
levels (fig. S5N). Together, these data reveal
that different mechanical shape deformations
regulate intracellular calcium levels and mod-
ulate cPLA2 activity under similar INM stretch;
uniaxial compression in confinement induces
high intracellular calcium levels specifically
in the nucleus, while isotropic radial stretch
in hypotonic stress conditions leads to a lower
intracellular calcium levels. Independently
modulating nucleus deformation and cal-
cium levels under different shape deformations
confirmed that both parameters engage syn-
ergistically to regulate cortical contractility
(Fig. 8A) and cellular dynamics under aniso-
tropic stress (Fig. 7E), thereby enabling a cell
to distinguish between different types of shape
deformation and to acquire a specific mor-
phodynamic response.
Intracellular nucleus positioning appeared

as a promising candidate to differentially mod-
ulate calcium levels. Endoplasmic reticulum–
plasma membrane (ER-PM) proximity has
been implicated as an important regulator of
cellular calcium signaling (47). Visualization
of membrane-proximal ER structures showed
that the ER was highly dynamic under con-

ditions of low confinement but was increas-
ingly immobilized between the nucleus-PM
interface for larger cell deformations in con-
finement (movie S9). In addition, the expand-
ing nucleus contact area close to the plasma
membrane closely correlated with an intra-
cellular calcium increase (fig. S6J). We spec-
ulated that stromal interaction molecule–Orai
(STIM-Orai), with STIM proteins located at
the ER and Orai proteins representing calcium-
selective PM calcium channels, could be in-
volved in cellular calcium regulation in confined
cells. STIM-Orai proteins have an established
function in store-operated calcium entry upon
depletion of calcium from the ER, which is
mediated via ER-PM proximity (48, 49). Anal-
ysis of STIM-Orai protein localization revealed
that both proteins accumulate at the interface
between the nucleus and plasma membrane
in confined cells at 7 mm (fig. S6, K and L). In
contrast, we observed a homogeneous distribu-
tion of both channels in cells under 13 mm
confinement height when the ER was not
spatially confined between the nucleus and
PM. These data support that ER immobiliza-
tion is associated with the specific enrichment
of STIM-Orai in the ER-PM contact region
where mechanical ER confinement occurs.
Inhibition of the STIM-Orai complex using
2-aminoethoxydiphenyl borate (2APB) further
blocked myosin II enrichment under cell defor-
mation in confinement (fig. S5I). Our observa-
tions support that mechanical compression of
the cell nucleus induces a tight connectivity
between ER-PM structures and STIM-Orai

localization at the ER-PM contact interface
involved in the up-regulation of intracellular
calcium levels in confined cells.

Discussion

Our data support that the nucleus establishes
a core element to measure cellular shape de-
formation via two key physical parameters:
(i) nuclear shape deformation leading to INM
unfolding and (ii) intracellular spatial posi-
tioning of the nucleus. In this model, INM
unfolding under nuclear shape change allows
for the deformation-dependent activation of
cPLA2 signaling, whereby cPLA2 activity is mod-
ulated by intracellular calcium levels set by
nucleus-PM proximity (Fig. 8B and fig. S7A).
The parameter space of these two variables
(INM unfolding and calcium levels) provides
a dual-input identifier for a cell to decode dis-
tinct shape deformations as exemplified on
anisotropic cell deformation in confinement
versus isotropic hypotonic cell stretching, allow-
ing cells to acquire a specific adaptive response
depending on the type of physical shape defor-
mation (fig. S7B).
Biochemical, physical, and mechanical cues

in the surrounding of a cell create manifold
information for cells, which is continuously
sensed, integrated, and transduced to allow
for complex cellular functioning. Here, we
show that the cell nucleus functions as a cel-
lular mechano-gauge for precisely decoding
cellular shape changes, allowing cells to adap-
tively and rapidly tune cytoskeletal network
properties andmorphodynamic behavior within
their 3D tissue microenvironment during de-
velopment. This mechanism lays a foundation
for functional principles underlying cellular
proprioception that, comparable to the sensing
of spatiotemporal changes in body posture and
movement (50), enable a precise interpreta-
tion of shape changes on the single-cell level.
The nucleus, being the largest organelle in

the cell, represents a prominent structure for
transmission and modulation of mechano-
sensitive processes (51–55), and nucleus de-
formation has been shown to influence nuclear
transport and cell differentiation (56–58),
chromatin organization (59–61), migration
(62–66), and pathfinding in constrained en-
vironments (67). Our findings support that
nucleus deformation and its intracellular po-
sitioning establish a cellular sensing module
that equips cells to rapidly and reversibly adapt
their dynamic response to shape fluctuations.
This “nuclear ruler pathway” was also identi-
fied in an accompanying study (68), support-
ing its conservation between embryonic and
differentiated cells in the adult organism. The
observation of a rapid contractile cell response
upon cell squeezing in confinement which is
followed by fast amoeboid motility is reminis-
cent of a “cellular escape reflex” that enables cells
to cope with physical constraints and acute
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Fig. 8. INM unfolding and intracellular calcium levels enable cells to decode isotropic stretch versus
cell squeezing in confinement. (A) Normalized relative cortical myosin II fluorescence intensity as a
function of nucleus unfolding and normalized Ca2+ (Calbryte520) intensity for different physical cell
deformations [dark blue, 7 mm confinement; light blue, 13 mm confinement; yellow, 7 mm confinement +
BAPTA-AM; red, hypotonic (0.5×) condition; magenta, hypotonic condition (0.5×) + ionomycin]. Data indicate
mean and SEM. The gray area sketches the relation between cortical myosin II and nuclear deformation
versus intracellular calcium levels. [Calcium data related to Fig. 4B, except for hypo + ionomycin (N = 41) and
BAPTA-AM + 7 mm (N = 9); for nuclear unfolding related to Fig. 2D and fig. S6B, and for cortical myosin II
levels related to Figs. 1A and 4A and figs. S5I and S6F]. (B) Sketch depicting how nucleus deformation and
intracellular nucleus positioning correlate with INM unfolding and intracellular calcium levels, which
differentially regulate cortical contractility and cellular morphodynamics.
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deformations of their shape. Such a mechanism
might be relevant for various biological pro-
cesses associated with migration plasticity of
cancer and immune cells in constrained 3D
tissue niches (69–72), mechanochemical feed-
back processes during morphogenesis (73),
and homeostatic tissue functions such as cell
density regulation (74), which require accu-
rate mechanisms to detect variations in cel-
lular size and shape and multicellular packing
density in crowded 3D tissues.

Materials and methods
Zebrafish maintenance

Zebrafish (Danio rerio) were maintained as
previously described (75). Embryos were kept
in E3 medium at between 25° and 31°C be-
fore experiments and staged according to
morphological criteria (76) and hours post-
fertilization (hpf). Wild-type embryos were
obtained from the AB strain background. All
protocols used have been approved by the
Institutional Animal Care and Use Ethic Com-
mittee (PRBB–IACUEC) and implemented ac-
cording to national and European regulations.
All experiments were carried out in accord-
ance with the principles of the 3Rs (replace-
ment, reduction, and refinement).

Transgenic fish lines

The following transgenic lines were used:
Tg(actb2:Lifeact-GFP) (77), Tg(actb2:Myl12.1-eGFP)
(78), Tg(actb2:Myl12.1-mcherry) (4), Tg(mezzo:
eGFP) (23), and Tg(actb2:Lyn-TdTomato) (79).
All progenitor cells expressing Myl12.1-eGFP
(myosin II) andLifeact-GFP (actin)wereobtained
from Tg(actb2:Myl12.1-eGFP) and Tg(actb2:
Lifeact-GFP).

Cell culture

To culture progenitor cells, embryos wereman-
ually dechorionated inE3 buffer at sphere stage
(4 hpf) or different stages, if indicated. Five to
twenty embryos were transferred to Dulbecco’s
minimum essential medium–nutrient mixture
F-12 (DMEM-F12; with L-glutamine and 15 mM
HEPES, without sodium bicarbonate and phe-
nol red) culture medium (Sigma) and mechan-
ically dissociated by manual tapping followed
by centrifugation at 200g for 3 min.

Sample preparation and surface coatings

The following products for surface coatings at
the indicated concentration have been used:
0.5 mg/ml PLL(20)-g[3,5]-PEG(2) (Susos) and
0.2 mg/ml fibronectin (Sigma-Aldrich). Before
PLL-PEG coating, both coverslips and dishes
were plasma cleaned. Uncoated or PLL-coated
glass dishes #1.5 were purchased from MatTek
(MatTek Corporation).

Cell confiner

Cells were confined using a dynamic confiner
(4DCell) similar to previously established pla-

nar microconfinement methods (30). To con-
fine cells at different heights, multiple Si molds
were produced by photolithography in a clean
room (Nanofabrication Laboratory, ICFO) by
depositing a SU-8 resin on a silicon wafer. In
brief, a photomask with the desired geometry
was created. Confinement coverslips were pre-
pared with polydimethylsiloxane (PDMS) with
the following heights: 18, 16, 13, 10, 8.5, and
7 mm. Coverslips were always plasma cleaned,
coated with PLL-PEG (if not indicated other-
wise), and equilibrated in DMEM before each
experiment. A pressure pump (AF1 microfluidic
pressure pump, Elveflow) together with the ESI
software was used to change the pressure for
tuning the confinement heights. For Raman
measurements and optical tweezers, two cover-
slips separated withmicrobeads or with a PDMS
membrane were used (height = 10 mm).

Reagents and inhibitor treatments

Pharmacological inhibitors were used at the
following concentrations: 1 mM cPLA2 inhib-
itor (pyrrophenone, Merck-Millipore), 10 mM
Bapta-AM (Cayman), 10 mM blebbistatin(+)
(Tocris Bioscience), 10 mM Y-27632 (Tocris Bio-
science), 10 mM ML-7 hydrochloride (Tocris
Bioscience), 1 mM nocodazole (Sigma), 50 nM
leptomycinB (Sigma-Aldrich), 1 mM ionomycin
(Sigma-Aldrich), 1 mM thapsigargin (Thermo
Fisher), 10 mM GsMTx4 (Tocris), 50 mM 2-APB
(Biogen-Santa Cruz), 10 mM gadolinium chloride
(Tocris), 2 mMactinomycin D (PanReac), 100 mM
Z-VAD(OMe)-FMK (Abcam), 1 mM staurosporine
(Abcam), and 1-oleoyl lysophosphatidic acid
(LPA, Tocris Bioscience). Measurements were
done directly after exposure to MLCK inhib-
itor, GsMTx4, ionomycin, and LPA; all other in-
hibitors were preincubated for 30 and 60 min
for Y-27632 prior to experiments.

Fluorescence staining

Calbryte520 (AAT Bioquest) was used to
study calcium dynamics. The staining kit–Red
Fluorescence–Cytopainter (ERTracker, Abcam)
or ER-Tracker Green (BODIPY FL Glibencla-
mide) was used to visualize the endoplasmic
reticulum respectively for confocal 3D colors
imaging and for TIRF microscopy experi-
ment. DNA-Hoechst (Thermo Fisher) was used
to stain the cell nucleus. Cells were incubated
with 5 mM Calbryte520 for 20 min, with 1 mM
ER-tracker for 30min and 1 mg/mlDNA-Hoechst
for 7 to 10min, as reported in the corresponding
protocols. After incubation, cells were washed,
centrifuged at 200g for 3 min and resuspended
in DMEMmedia.

Variable osmotic culture conditions

D-Mannitol (Sigma) was diluted in DMEM to
obtain a culture medium with an osmolarity
of ~450 milliosmoles per liter (corresponding
to a 1.5× media). Milli-Q water was added to
DMEM for hypotonic conditions.
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nucleus thereby allows cells to adapt their behavior to the local tissue microenvironment.
and activates a mechanotransduction pathway that controls actomyosin contractility and migration plasticity. The cell
as an intracellular ruler to measure cellular shape variations. The nuclear envelope provides a gauge of cell deformation 

 now show that the nucleus can actet al. and Lomakin et al.Shen and Niethammer). Working independently, Venturini 
deformations to ensure correct tissue development and homeostasis remains largely unknown (see the Perspective by
constraints in dense tissues, physical activity, and injury all impose changes in cell shape. How cells can measure shape 

Single cells continuously experience and react to mechanical challenges in three-dimensional tissues. Spatial
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