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SUMMARY 

 

Neurons are among the most highly polarized cell types. They possess structurally and functionally 

different processes, axon and dendrites, to mediate information flow through the nervous system. 

Although it is well known that the microtubule cytoskeleton has a central role in establishing neuronal 

polarity, how its specific organization is established and maintained is little understood.  

Using the in vivo model system Caenorhabditis elegans, we found that the highly conserved UNC-119 

protein provides a link between the membrane-associated Ankyrin (UNC-44) and the microtubule-

associated CRMP (UNC-33). Together they form a periodic membrane-associated complex that anchors 

axonal and dendritic microtubule bundles to the cell cortex. This anchoring is critical to maintain 

microtubule organization by opposing kinesin-1 powered microtubule sliding. Disturbing this molecular 

complex alters neuronal polarity and causes strong developmental defects of the nervous system leading 

to severely paralyzed animals. 
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INTRODUCTION 

The structural organization and dynamic remodeling of the cytoskeleton is essential for neuronal 

development and survival. Axons and dendrites are filled with bundles of non-centrosomal microtubules, 

which are important for maintaining cellular structure as well as intracellular transport. Notably, the 

microtubule cytoskeleton plays a central role in neuronal development and polarization: axons have 

microtubules with their plus-end projecting away from the soma, while dendrites have either a mixed 

(vertebrates), or uniform minus-end out (invertebrates), microtubule organization (Baas et al., 1989; 

Kapitein and Hoogenraad, 2015). This difference in microtubule organization allows for selective cargo 

transport to either neurite by specific microtubule motors and is considered an evolutionary conserved 

characteristic of axon-dendrite polarity (Rolls and Jegla, 2015). Disorganized axonal and dendritic 

microtubules lead to deficient transport and subsequently to neuronal polarity defects (Harterink et al., 

2018; Yogev et al., 2016). In addition, defects of the microtubule cytoskeleton are associated with a range 

of neuronal diseases (Falnikar and Baas, 2009; Franker and Hoogenraad, 2013) and the capacity of 

neurons to regenerate is intimately linked to microtubule stability and plus-tip dynamics (Blanquie and 

Bradke, 2018; Tang and Chisholm, 2016).  

During early neuronal development, microtubules are relatively mobile and can be transported by 

microtubule motors. Studies in Drosophila and C. elegans indicate that the motor kinesin-1 has a role in 

setting up the characteristic axon-dendrite microtubule organization, by sliding microtubules against each 

other (Lu et al., 2013; Winding et al., 2016; Yan et al., 2013). At later stages of development, the entire 

microtubule cytoskeleton is largely immobilized, (Kahn et al., 2018; Lu et al., 2013), which is important 

to maintain the specific microtubule organization. Various microtubule associated proteins (MAPs) bind 

to the microtubule lattice, which can stabilize the microtubule itself and can cross-link them together thus 

preventing microtubule-microtubule sliding (Bodakuntla et al., 2019). In addition, the microtubule 

bundles were found connected to other cortical cytoskeletal elements (Freal et al., 2016; Liang et al., 

2013; Qu et al., 2017). Although the importance of cortical anchoring of microtubule bundles to maintain 

neuronal microtubule organization and thereby maintain neuronal polarity and function is apparent, the 

evidence for this is largely lacking. 

In this study, we use Caenorhabditis elegans to identify the molecular mechanisms underlying neuronal 

microtubule organization. Surprisingly, we found that the highly conserved protein UNC-119 forms a 

ternary complex with UNC-44 (Ankyrin) and UNC-33 (CRMP) in vitro and in vivo. We show that this 

complex forms a similar periodic arrangement as the spectrin cytoskeleton and that it is critical to anchor 

the microtubule cytoskeleton to the neuronal cortex. In the absence of cortical anchoring, UNC-116 

(kinesin-1) induces massive microtubule cytoskeleton sliding in axons and dendrites, leading to loss of 
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axon-dendrite microtubule polarity and subsequently to loss of neuronal functioning. Thus, we propose 

that the balance between kinesin-1 dependent microtubule sliding and cortical microtubule anchoring is 

essential for axon-dendrite microtubule polarity and thus for neuron development and functioning. 

 

RESULTS 

unc-119 is important for neuronal polarity and development 

Genetic screens in C. elegans identified many unc-genes, which lead to impaired (‘uncoordinated’) 

locomotion (Brenner, 1974). Neuronal polarity defects and disorganized neuronal microtubules have been 

observed in several unc-mutants (Maniar et al., 2011; Yan et al., 2013). In this study, we analyzed 

neuronal development and axon-dendrite polarity in the highly polarized PVD neuron (Figure 1A), which 

is widely used as a model neuron  (Sundararajan et al., 2019). We found that the unc-119 mutant ed3, 

which carries an early stop mutation, has a fully penetrant microtubule orientation defect in the PVD 

anterior dendrite (Figure 1B and 1C). Axons were occasionally affected as well (Figure S1A). The 

microtubule orientation defect is not specific to the PVD neuron, as we observed a similar phenotype in 

the PHC neuron (Figure S1B). In contrast, the ciliated URX and PQR neurons did not have obvious 

microtubule defects (Figure S1C-D), as is expected because these neurons have additional mechanisms to 

organize neuronal microtubules (Harterink et al., 2018). Furthermore, synaptic vesicles were consistently 

mislocalized to the cell body and dendrites in the unc-119 mutant (Figure 1D and S1E-I), and we 

observed morphological defects for the PVD neuron; the axon and anterior dendrite are shorter and 

dendrite branching is reduced (Figure 1E and S1J-L). The disorganized microtubules and vesicle 

mislocalization resemble defects previously observed in unc-33 (CRMP) and unc-44 (Ankyrin) mutants 

(Maniar et al., 2011). unc-119 is mainly expressed in neurons (Maduro and Pilgrim, 1995) and codes for a 

highly conserved protein (Maduro et al., 2000), homologous to human UNC119A and UNC119B. Indeed, 

by introducing UNC-119::GFP specifically in the PVD neuron we were able to suppress the dendritic 

microtubule defect (Figure 1C), which indicates that UNC-119 functions in a cell intrinsic manner. 

However, the molecular function of UNC-119 in controlling neuronal development is completely 

unknown.   

To study UNC-119 protein localization, we generated a C-terminal GFP knock-in line using the SEC-

approach (Dickinson et al., 2015) and observed GFP expression in all neurons (Figure 1F), as previously 

reported (Lim et al., 1999; Maduro and Pilgrim, 1995). The GFP signal can be detected in axons (ventral 

nerve cord and nerve ring) as well as dendrites (amphid nerve). Strikingly, the protein is not enriched in 

the cell bodies, which suggests that the protein is not freely diffusing in the cytoplasm. To determine 
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UNC-119 protein dynamics, we performed fluorescence recovery after photobleaching (FRAP) 

microscopy (Diegelman and Kool, 1998). We found that both in axons and dendrites the fluorescence 

hardly recovers and that the immobile UNC-119 pool is 70-80% (figure 1G-1I). Taken together, this 

suggests that UNC-119 is tightly associated with undefined structures in axons and dendrites, where it is 

important for neuronal development and microtubule organization. 

 

UNC-119 forms a complex with UNC-44 (Ankyrin) and UNC-33 (CRMP) 

To understand how UNC-119 functions in organizing neuronal polarity, we performed 

immunoprecipitations experiments using the unc-119::gfp knock-in animals followed by mass 

spectrometry to identify potential interaction partners of UNC-119 (Table 1). Interestingly, one of the top-

scoring partners of UNC-119, UNC-33 (CRMP), was reported to be important for neuronal development 

and microtubule organization (Maniar et al., 2011) and mutations in unc-33 lead to similar microtubule 

defects (Harterink et al., 2018) as the unc-119 mutant (Figure 1 and S1). UNC-33 is a putative 

microtubule binding protein, which has 3 isoforms in C. elegans: small (UNC-33S), medium (UNC-33M) 

and large (UNC-33L), but only the large isoform is able to rescue the neuronal polarity defects of the unc-

33 mutant (Maniar et al., 2011; Tsuboi et al., 2005). To validate and map the interaction between UNC-33 

and UNC-119, we performed pull-down experiments and found that the UNC-33L, but not UNC33S, 

binds to UNC-119 (Figure 2A and 2B). Moreover, UNC-119 was able to pull down the UNC-33L 

specific N-terminus (Figure 2B), further proving that the UNC-119 interaction is specific for the UNC-

33L isoform. 

Previous work has shown that UNC-33 (CRMP) acts downstream of unc-44 (Ankyrin) and that the unc-

44 mutant has very similar phenotypes as the unc-33 mutant (Harterink et al., 2018; Maniar et al., 2011; 

Meng et al., 2016). However, we failed to detect a direct interaction between UNC-44 and UNC-33 by 

immunoprecipitation (Figure 2D). In a yeast two-hybrid screen for C. elegans interacting proteins, UNC-

119 was identified as a possible binding partner for UNC-44 (Li et al., 2004). This, together with our 

finding that UNC-119 interacts with UNC-33, suggests that UNC-119 bridges UNC-44 to UNC-33. To 

test the possible interaction between UNC-44 and UNC-119, we cloned UNC-44 into 6 fragments (Figure 

2A). Using these fragments we found that the UNC-44 C-terminus specifically was able to bind to UNC-

119 (Figure 2C), which is in agreement with the interaction domain identified by the yeast two-hybrid 

screen (Li et al., 2004). To test if UNC-44/UNC-119/UNC-33 form a ternary complex we performed pull-

down experiments with the UNC-44 C-terminus mixed with either UNC-119::GFP, UNC-33L::GFP or 

both proteins. We again found that UNC-119 efficiently binds to the UNC-44 C-terminus, however UNC-
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33L only binds to UNC-44 in the presence of UNC-119 (Figure 2D), showing that UNC-33L, UNC-44, 

and UNC-119 together can form a ternary complex (Figure 2E). Since mutants for each of these three 

unc-genes have very similar phenotypes and that the corresponding proteins can form a complex strongly 

suggests that UNC-33L, UNC-44, and UNC-119 have a common function in neuronal development. 

 

UNC-44 (Ankyrin) immobilizes UNC-33 (CRMP) and UNC-119 in neurons  

To determine whether the ternary complex also exists in living organisms, we visualized the localization 

and dynamics of the individual proteins.  Using CRISPR/Cas9, we inserted a GFP at the C-terminus of 

the giant AO13 Ankyrin splice isoform, which is essential for neuronal development 

(Boontrakulpoontawee and Otsuka, 2002; Otsuka et al., 2002). UNC-44::GFP mainly localizes to axons 

and dendrites and its expression pattern is nearly indistinguishable from the UNC-119::GFP knock-in 

(Figure 3A). We observed that UNC-44::GFP clearly localizes to the cortex (Figure 3B), and that it is 

highly immobile by FRAP (Figure 3C-3E), as expected from a protein that is part of cortical cytoskeleton 

(Bennett and Lorenzo, 2016), Moreover, this immobility does not depend on either UNC-119 or UNC-33 

(CRMP) (Figure 3F, 3G, S2C and S2D), which confirms that UNC-44 (Ankyrin) acts upstream of these 

proteins. However, when we analyzed the dynamics of the UNC-119::GFP in the unc-44 mutant, we 

found that the UNC-119 recovers rapidly and seems to diffuse freely in the absence of UNC-44 (Figure 

3H, 3I, S2E and S2F). Notably, the UNC-119 immobility was not affected in the unc-33 mutant. Taken 

together, this data suggests that UNC-44 binds and stabilizes UNC-119. 

Since UNC-33 exists as three isoforms and that an N- or C-terminal GFP fusion of UNC-33L disrupts 

protein function (results not shown), it is not possible to endogenously tag specific isoforms. However, 

inserting an internal GFP resulted in a functional UNC-33L protein (Figure 3J and S2G) (Maniar et al., 

2011). Therefore, we generated single copy (MosSCI) transgenes for each of the UNC-33 isoforms, 

which we expressed in the PVD neuron, and found that specifically UNC-33L is able to rescue the 

neuronal microtubule orientation defect of the unc-33 mutant (Figure 3L). We did not detect a specific 

subcellular localization for UNC-33L, nor did we observe obvious differences in localization between the 

three UNC-33 isoforms, except for UNC-33S and UNC-33M being a bit enriched in the cell body (Figure 

3K) (Maniar et al., 2011). However, FRAP analysis did reveal differences in dynamic properties between 

the UNC-33 isoforms. UNC-33L signal did hardly recover (immobile fraction is ~ 85%; Figure 3M-3O), 

whereas UNC-33M and UNC-33S partially recovered (immobile fraction is ~ 60%). This suggests that 

the two smaller UNC-33 isoforms have a rapidly diffusing pool as well as an anchored pool. Furthermore, 

we found that the UNC-33L immobility is completely lost in the unc-44 or unc-119 mutants (Figure 3P 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/783837doi: bioRxiv preprint first posted online Sep. 26, 2019; 

http://dx.doi.org/10.1101/783837


and 3Q and video 1), which indicates that UNC-33 acts downstream of UNC-44 and UNC-119. Similarly, 

GFP::UNC-33S mobility increases in the unc-119 and unc-44 mutant backgrounds (Figure 3R and 3S). In 

conclusion, these results together with the biochemical interaction data suggest that UNC-44 (Ankyrin) 

immobilizes UNC-33L (CRMP) via UNC-119. 

 

UNC-44 (Ankyrin), UNC-119 and UNC-33 (CRMP) form a periodic pattern along neurites 

Ankyrin proteins are well-characterized component of the cortical actin-spectrin cytoskeleton (Bennett 

and Baines, 2001), which forms a characteristic periodic cytoskeleton in invertebrate (Krieg et al., 2017) 

and vertebrate neurons (Xu et al., 2013). We thus sought to investigate if UNC-44, similar to Ankyrin-G 

in mammalian and fly neurons (Leterrier et al., 2015; Pielage et al., 2008) forms periodic structures as an 

indicator for its integration into the cortical cytoskeleton. In order to super resolve the cytoskeleton, we 

resorted to TIRF-SIM on isolated primary neuron cultures (Methods, Figure S4). We observed that both 

YFP::UNC-70 (β-spectrin) and UNC-44::GFP (Ankyrin) consistently form a period assembly similar to 

the 180-200nm pattern observed with β-spectrin (Figure 4A, M; p=0.17, pairwise Wilcoxon rank sum 

test). Importantly, we also observed a ~200nm periodic pattern with the UNC-119::GFP, that corresponds 

well with the observed UNC-44 distribution (Figure 4B, N; p=0.82, pairwise Wilcoxon rank sum test). 

Next, we isolated primary neurons from transgenic animals for the full-length, long version of UNC-33L, 

which we found to interact with UNC-119, and as well the truncated UNC-33M version, which does not 

bind to UNC-119. Consistent with this, we observed the periodicity of UNC-33L, in striking similarity to 

UNC-119 and UNC-44 (Figure 4C-E; p=0.82; p=0.97; pairwise Wilcoxon rank sum test, respectively). In 

contrast, we did not observe a periodic pattern for the UNC-33M isoform (Figure 4E; p=4e-3, pairwise 

Wilcoxon rank sum test with unc-119), even though it localized into the axon of cultured neurons. The 

partial periodicity could be explained by the immobile fraction we also observed in the FRAP assay, that 

associates with microtubules. Taken together, the ternary UNC-44/UNC-119/UNC-33L complex shares a 

stereotypic periodic pattern similar to the cortical UNC-70 cytoskeleton. We thus suggest that the ternary 

complex integrates the microtubule cytoskeleton with the cortical actin/spectrin network.  

 

UNC-44 (Ankyrin) and UNC-119 anchor the microtubule binding UNC-33L (CRMP) to the cortex 

CRMPs are described as cytosolic phosphoproteins that can bind microtubules via their C-terminus (Lin 

et al., 2011; Niwa et al., 2017; Zheng et al., 2018). To increase subcellular resolution, we ectopically 

expressed UNC-33S::GFP and UNC-33L::GFP in the hypodermal seam cells and found that both 
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efficiently bind to microtubules and that the C-terminus is indeed essential for this interaction (Figure 4G 

& 4H and video 2). Interestingly, we observed that upon loss of microtubule binding, UNC-33L partially 

relocalizes to the cell cortex, whereas the shorter UNC-33S does not. In neurons, immobilization of UNC-

33L depends on UNC-44 and UNC-119 (Figure 3) and although expression of these proteins is mainly 

neuronal, low levels are also present in the hypodermal seam cells (Figure 1F) (Chen et al., 2017). Indeed, 

we found that the cortical relocalization of UNC-33L upon loss of microtubule binding depends on UNC-

44 and UNC-119 (Figure 4H and video 2).  To address the dynamics of UNC-33 upon loss of binding to 

microtubules in neurons, we expressed the three UNC-33 isoforms lacking the C-terminus (ΔC) in the 

PVD neuron (Figure S3A). With FRAP analysis, we found that UNC-33SΔC and UNC-33MΔC rapidly 

recover (Figure 4I-4M), which indicates that the immobile pool of UNC-33S and UNC-33M (Figure 3N) 

is the result of microtubule binding. UNC-33LΔC however, is still highly immobile (Figure 4I, 4N and 

4O). This suggests that although binding to microtubules via the C-terminus is essential for UNC-33L 

functioning (Figure S3B), it is not required for its immobilization. The UNC-33LΔC signal rapidly 

recovers in the unc-119 mutant (Figure 4P and 4Q), which shows that UNC-119 binds to the N-terminus 

to immobilize UNC-33L to UNC-44. In agreement, in the unc-44 mutant UNC-33L appears to decorate 

the dynamic microtubules in the cell body (Video 1). Together, these results indicate that in neurons 

UNC-33L stably associates with microtubules via its C-terminus and to the cortex through its N-terminal 

interaction with UNC-119. 

 

The UNC-44/119/33 complex immobilizes the neuronal microtubule cytoskeleton 

The stability of the UNC-44/119/33 complex and the attachment of the microtubule binding UNC-33L 

(CRMP) to the cortex, suggests that the complex anchors microtubules in neurons. To visualize the 

microtubule cytoskeleton we expressed the microtubule binding protein MAPH-1 in the PVD neuron 

(Harterink et al., 2018)  and found that microtubules are evenly distributed over the primary dendrites and 

the axon in wild type animals (Figure 5A). In the cell body, some microtubule dynamics can be observed 

(Video 3). Interestingly, in each of the unc-mutants we observed neuronal development defects and 

disorganization of the microtubule cytoskeleton; microtubules were no longer restricted to the primary 

dendrite, but penetrated the side branches as well (Figure 5A and 5B). Additionally, in these mutants 

microtubule mobility in the cell body is increased and we observed microtubule buckling at branchpoints 

(Video 3). To examine the peculiar microtubule dynamics, we constructed a TBA-1 (tubulin) with an N-

terminal photoactivatable-GFP (PA-GFP) (Kahn et al., 2018; Patterson and Lippincott-Schwartz, 2002). 

Upon activating a small region in the dendrite, the cytoplasmic tubulin rapidly diffuses, while the 

fluorescent tubulin that is incorporated in the microtubule remains. In wild type worms, the photo-
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activated region hardly displaced over the course of several minutes (Figure 5C, 5D and Video 4), which 

indicates that the neuronal microtubule cytoskeleton in a mature neuron is immobilized. Strikingly, this 

immobility was lost in the unc-44 (Ankyrin), the unc-119 and the unc-33 (CRMP) mutants (Figure 5C, 

5D and Video 4) and we observed rapid transport of the photo-activated region with a bias towards the 

cell body: In the unc-mutants: in 12/20 animals the microtubules translocated towards the cell body and in 

8/20, microtubules moved in both directions. These results show that the UNC-44/119/33 complex 

functions as a cortical anchoring complex to immobilize the microtubule cytoskeleton in neurons. 

 

The UNC-44/119/33 complex prevents kinesin-1 dependent microtubule sliding 

The displacement of the microtubules in the unc-mutants suggests that forces are exerted on the 

microtubule cytoskeleton, potentially by microtubule motors. Previously, unc-116 (kinesin-1) was shown 

to be important for dendritic microtubule organization, possibly by transporting microtubules (Yan et al., 

2013). If the forces on microtubules are indeed generated by UNC-116, the unc-116 mutant should not 

exhibit increased microtubule dynamics, since the microtubules are still anchored to the cortex by the 

UNC-44/119/33 complex. Furthermore, the microtubule sliding observed in unc-mutants should be 

suppressed by depletion of unc-116. We used an endogenously floxed unc-116 mutant, which can knock-

out unc-116 specifically in the PVD neuron lineage (Harterink et al., 2018). As anticipated, we found that 

loss of unc-116 did not induce the microtubule mobility (Figure 6A, 6B and video 5). More importantly, 

the depletion of unc-116 (kinesin-1) completely suppressed the microtubule mobility in the unc-33 

(CRMP) mutant. Additionally, the partial loss-of-function mutant for the kinesin-1 adaptor, klc-2 (kinesin 

light chain), also suppressed the microtubule dynamics of the unc-33 mutant (Figure 6A). This shows that 

in the absence of the cortical anchoring complex kinesin-1 slides microtubules through the neurites. This 

function appears specific to the kinesin-1 motor, as depletion of unc-104 (kinesin-3) did not suppress the 

microtubule mobility in the unc-33 mutant (Figure 6A, 6B and video 5).  

 

Direct coupling of UNC-33S (CRMP) to cortical UNC-44 (Ankyrin) rescues the unc-119 mutant 

Altogether we have found that UNC-119 bridges the membrane-associated UNC-44 (Ankyrin) to the 

microtubule binding UNC-33L (CRMP) to immobilize the microtubule cytoskeleton (Figure 7A). While 

in a wild type animal the UNC-116 (kinesin-1) motor is essential for neuronal polarity (Yan et al., 2013), 

in the absence of either of the components of the ternary complex, UNC-116 induces robust microtubule 
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sliding. We propose that the UNC-44/119/33 complex acts as a membrane-associated anchoring complex 

to curb kinesin-1 motor activity, for proper neuronal development, polarity and functioning. 

To confirm this model, we examined whether artificial anchoring of UNC-33S (CRMP) is sufficient to 

balance kinesin-1 activity in the absence of the cortical anchoring complex. To do this, we fused UNC-

33S to the GFP-nanobody (vhhGFP) and expressed it in the PVD neuron of unc-44::gfp knock-in animals 

(Figure 7A). Artificial coupling of UNC-33S to UNC-44 rescued the neuronal microtubule defects of the 

unc-33 and unc-119 mutants (Figure 7B) as well as the neuronal morphology of the unc-33 mutant 

(Figure 7C). Remarkably, expression of the vhhGFP::UNC-33S fusion protein in all neurons rescued the 

animal movement of the unc-119 mutant (Figure 7D, 7E, S2B and Video 6), showing that neuronal 

functioning is restored and that the unc-119 mutant locomotion defect is caused by a loss of UNC-33L 

anchoring to the cortical UNC-44 (Ankyrin) in neurons.  
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DISCUSSION 

The C. elegans unc-119 mutant is severely paralyzed, a phenotype that can easily be rescued by 

reintroduction of the gene, which has extensively been exploited as a transgenesis background in C. 

elegans for many year (Maduro, 2015). Although it is well known that unc-119 is expressed in neurons 

(Maduro and Pilgrim, 1995), where it is important for neuron development (Knobel et al., 2001; Materi 

and Pilgrim, 2005), the molecular function underlying the severe paralysis of the mutant has remained 

elusive. Here we report that UNC-119 is part of a membrane anchored cytoskeleton complex that anchors 

the microtubule cytoskeleton to the membrane. Depletion of the cortical anchoring complex leads to 

dramatic microtubule sliding induced by UNC-116 (kinesin-1). We expect that this excessive microtubule 

sliding is the underlying cause of the microtubule polarity defects and impaired neuronal development 

observed in the mutants. Since UNC-116 itself is essential for dendritic minus-end out microtubule 

organization (Yan et al., 2013), this suggests that neuronal development relies on a fine balance between 

microtubule sliding and microtubule stabilization by cortical anchoring. 

A proper balance of microtubule sliding and bundle stabilization was also shown to be important for 

neuron development in other organisms. In Drosophila, microtubules are slid over other microtubules by 

kinesin-1 and potentially also by cortically anchored dynein, during the earliest phases of neurite 

outgrowth (Del Castillo et al., 2015). To accomplish this microtubule-microtubule sliding, kinesin-1 

contains an additional microtubule binding site in its tail, which when mutated leads to developmental 

defects in both the axon and the dendrite, without affecting kinesin-1 cargo transport (Jolly et al., 2010; 

Winding et al., 2016). Mutating the sequence for the presumed extra microtubule binding site in the C. 

elegans UNC-116 motor tail reduced the capacity of the motor to organize microtubules minus-end out 

(Yan et al., 2013), arguing in favor of kinesin-1 driven microtubule-microtubule sliding. This kinesin-1 

dependent microtubule sliding in Drosophila supposedly is independent of the kinesin light chain 

adaptors (Jolly et al., 2010; Winding et al., 2016). However, we found that, similar to depletion of UNC-

116 (kinesin-1), depletion of KLC-2 also was able to suppress the microtubule sliding defect in the unc-

33 (CRMP) mutant. Future work will have to address the precise role of microtubule sliding by kinesin-1 

in neuronal development. 

UNC-119 is a highly conserved protein both in sequence and in function (Maduro et al., 2000). 

Interestingly, homologs for unc-119 were found to be important for neuronal development in other 

species as well; depletion of zebrafish UNC-119a led to various neuronal defects that are reminiscent of 

the C. elegans phenotypes (Manning et al., 2004) and depletion of UNC-119A in cultured rat 

hippocampal neurons led to reduced dendritic branching (May et al., 2014). Thus far, the mechanism of 

these vertebrate UNC119 homologs in neuronal development has not been investigated at the molecular 
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resolution. It is well documented that the mammalian UNC119 proteins can bind to the lipid moiety of 

myristoylated proteins (Constantine et al., 2012). As such, UNC119 acts as a chaperone to solubilize and 

transport the otherwise membrane-anchored proteins to other membranes or the cilium (Konitsiotis et al., 

2017; Wright et al., 2011; Zhang et al., 2011), where the interaction with the GTPases Arl2 or Arl3 

allosterically releases the myristoylated cargo from UNC119 (Ismail et al., 2012; Kobayashi et al., 2003). 

Similar functions have been proposed for UNC-119 in C. elegans. UNC-119 was shown to interact with 

Arl2/3 homologues, and the unc-119 mutant has deficient transport of myristoylated proteins to the cilium 

as well as cilium formation defects (Warburton-Pitt et al., 2014; Zhang et al., 2011; Zhang et al., 2016). 

However, we observed no microtubule organization defects in mutants for the C. elegans Arl2/3 genes 

(results not shown). Moreover, we were able to rescue the unc-119 mutant microtubule organization and 

locomotion by directly attaching UNC-33 to UNC-44, demonstrating that UNC-119 functions as a 

structural scaffold to bring these proteins together for proper neuronal development and functioning. 

In Drosophila, the kinesin-1 sliding is counteracted by the “mitotic” kinesin MKLP1 (Del Castillo et al., 

2015), which potentially cross-links microtubules. In mammalian neurons, the stabilization of 

microtubule cytoskeleton relies on various MAPs that can bind and stabilize individual microtubules and 

cross-link them together (Ramkumar et al., 2018). This is especially apparent in the axon, where the 

microtubules are regularly spaced and accumulate modifications indicative for long lived microtubules 

(Chen et al., 1992; Song and Brady, 2015). Less is known, however, about how such a cross-linked 

microtubule array is immobilized itself in the neuron. In Drosophila, the microtubule cytoskeleton is 

stabilized by the spectraplakin protein Shot, which binds to both microtubules and the actin cytoskeleton 

(Qu et al., 2017; Sanchez-Soriano et al., 2009). Although the role of Shot in setting up axon-dendrite 

polarity is not addressed, in the absence of Shot, axon regeneration is affected and the microtubules are 

less bundled, which leads to buckling of microtubules. In C. elegans we observed similar microtubule 

buckling in the absence of the cortical anchoring complex (video 3). The dynamic association of the 

microtubule cytoskeleton to the spectrin-actin cytoskeleton is an important factor during neuron 

development (reviewed by (Coles and Bradke, 2015; Krieg et al., 2017)).  

Neurons typically express giant Ankyrin isoforms that may have a common evolutionary origin and that 

have essential functions in neuron development (Jegla et al., 2016). Interestingly, these giant Ankyrin 

proteins evolved several ways to connect the submembrane cytoskeleton to the microtubule network. In 

Drosophila, Ank2 was shown to directly bind to the microtubules (Pielage et al., 2008; Stephan et al., 

2015), whereas in mammalian neurons, Ankyrin-G localizes to the axon initial segment, where it binds 

indirectly to microtubules via multiple EB proteins (Freal et al., 2016; Leterrier et al., 2011). Recently it 

was found that the giant Ankyrin-B protein localizes to axons and that it is important for the microtubule 
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organization in the axon (Yang et al., 2019). Since static enrichment of EB proteins is specific for the 

axon initial segment by binding to Ankyrin-G (Leterrier et al., 2011), it is unclear how Ankyrin-B 

connects to the microtubule cytoskeleton in the axon. Here, we show that in C. elegans the giant UNC-44 

(Ankyrin) isoform interacts with microtubules via UNC-119 and UNC-33 (CRMP) in both axons and 

dendrites. Also in mammalian neurons, CRMPs are undeniably important for microtubule organization, 

neuronal development, and neuronal polarity (Arimura et al., 2004). This might suggest that the 

Ankyrin/UNC119/CRMP complex also functions as a microtubule anchor in other species. However, 

since UNC-119 binds to the non-conserved N-terminus of UNC-33L in C. elegans, further research is 

required to elucidate possible interactions and common functions of UNC-119 and UNC-33 in 

mammalian neurons. 

The neuronal microtubule cytoskeleton is typically highly immobile in axons and dendrites of mature 

neurons (Kahn et al., 2018; Lu et al., 2013). During neuronal development, however, growth and 

retraction of neurites is intimately linked to microtubule stability and dynamics (Lewis et al., 2013; 

Rumpf et al., 2019). Thus, it is likely that stability of the anchoring complex itself is regulated and/or that 

binding of the microtubules to the anchoring complex is regulated. We found that the direct coupling of 

UNC-33S to UNC-44 was able to bypass UNC-119 and thus to rescue the unc-119 mutant phenotype. 

However, whether microtubules bind continuously to UNC-33 (CRMP), or whether their binding is 

regulated, e.g. by phosphorylation (Zheng et al., 2018), is not yet known. The coordination of microtubule 

sliding and anchoring during neuronal development will be an important focus for further research. 

Interestingly it was recently shown that CRMPs are hyper-phosphorylated in the central nervous system 

of Alzheimer disease patients, and the phosphorylated CRMP was observed primarily in dystrophic 

neurons (Mokhtar et al., 2018). In addition, this amyloid beta-dependent CRMP phosphorylation is 

suggested to directly impair kinesin-1 association and thus axon development in humans. As also autism 

associated mutations in the giant Ankyrin-B gene were found to affect the microtubule organization in the 

axon (Yang et al., 2019), our observation of disorganized microtubule cytoskeleton  in the absence of 

CRMP or Ankyrin, suggest a conserved mechanism of MT stabilization across evolution. Thus, 

understanding how the neuronal microtubule cytoskeleton is connected to other cellular structures not 

only has great potential to help understand neuronal development, but may also lead to new ways to treat 

damaged neurons. 
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MATERIALS AND METHODS 

C. elegans culturing, constructs and transgenesis 

Strains were cultured using standard conditions at 15 °C or 20 °C and imaged at room temperature. All 

strains used for this study can be found in supplementary Table 2. New transgenic strains were generated 

by injection of the indicated constructs forming extra-chromosomal lines, single copy insertions using 

mosSCI (Frokjaer-Jensen et al., 2008) or by endogenous insertions/deletions using CRISPR. unc-

33(hrt7), unc-44(hrt8) were generated by injection of the guide + Cas9 plasmid + Pmyo-2::tdTomato into 

STR318 and screening for Unc phenotype. Similarly the deletion of cb-unc-119 form mosSCI lines was 

performed by injecting cb-unc-119 sgRNA with Cas9 protein and scoring for the Unc phenotype. To 

generate unc-44(hrt5[GFP]) we used pha-1 co-conversion approach (Ward, 2015) and to generate unc-

119(hrt13[GFP]) we used the self-excising cassette-approach (Dickinson et al., 2015). Constructs were 

generated using multisite Gateway cloning (Invitrogen) or by Gibson assembly using NEBuilder (New 

England Biolabs) and were sequenced for verification (all cloning details can be found in supplementary 

Table 2). 

Locomotion assay. Pick 10-20 L4 animals from an unstarved plate to fresh plates, one worm to a plate, 

and put all the plates in room temperature for 10min. Gently place the plate on the dissecting scope. Start 

a 3 minute timer, and begin counting body bends. If an animal stopped moving or reversed direction, the 

count was abandoned. If the animal is at the edge of the lawn, put the plate aside for a few minutes and 

come back to it for measurement when the worm is away from the lawn edge. Count the all the worms in 

the same day, using the same batch of plates. 

 

Primary cell culture and immunocytochemistry 

Primary cell culture. Embryonic cell isolation was performed using a previously described method with 

some modifications (Krieg et al., 2017). Briefly, synchronized worms were seeded onto peptone enriched 

plates and incubated at RT until the plates were populated with eggs. Then, the plates were washed off 

and the eggs were collected using milli-Q H2O. The worm and egg pellets were resuspended in the freshly 

prepared bleaching solution and rocked gently for 4-7 minutes, once 70-80% of the worms were lysed the 

reaction was stopped using egg buffer (118 mM NaCl, 48 mM KCl, 2 mM CaCl2, 2 mM MgCl2, 25 mM 

HEPES, pH 7.3 and an osmolality of 340 mOsm.). The collected eggs were washed 3 times with fresh 

egg buffer. Then the eggs were separated using 30% final concentration of sucrose by centrifuging at 

12000 rpm for 20 minutes. The separated top layers of eggs were collected in a new tube and washed 2-3 
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times with egg buffer. Then, the egg were treated with chitinase (1 U/ml)) for 40 minutes to digest the egg 

shell. The chitinase reaction was stopped using L15 medium. After chitinase treatment the embryos were 

passed through 25 G needle for dissociating into single cells. The dissociated cell suspension was filtered 

through 5 µm Durapore filter (Millipore). Then the single cell solution was centrifuged for 3 minutes at 

3200 rpm and the pellet was resuspended in a lower volume of L15 medium and seeded on to #1.5 glass 

bottom petri dish coated with peanut lectin and incubated at 25 C. The cell culture medium was changed 

every day and at day 3 post plating we proceeded with the immunocytochemistry. 

Immunocytochemistry protocol. Cells were washed 2x gently with media, followed by a PBS++ (Ca2+ 

and Mg2+) wash. Then the cells fixed cells with 4% (v/v) PFA in PBS++ (Ca2+ and Mg2+) for 10-20 

minutes at RT. Then cells were washed 3x with PBS. Cells were permeabilized using 0.01% Triton in 

PBS for 20 minutes at RT. Then the cells were washed 3x with PBS, and then blocked in 2% BSA for 20-

30 minutes at RT. The primary antibody (anti-green fluorescent protein, REF A11122, Invitrogen by 

Thermo Fisher Scientific) was directly added the blocking buffer at 1:1000 dilution and incubated at 4 C 

overnight. The next day the cells were washed 3x with PBS, 10 minutes each. Then, the secondary 

antibody (Abberior STAR 488, Cat #2-0012-006-5, Abberior) was used at a dilution of 1:1000 and 

incubate for 2 h at RT. The cells were washed 5x with PBS, 10 minutes each. Then the samples were 

mounted in Mowiol and stored at 4⁰ C until imaging. 

 

Imaging and data analysis 

Fluorescent imaging. L4 or young adult worms were anesthetized with 10 mM tetramisole or 5 mM 

Levamisole on a 5% agarose pad and all live imaging was performed within 60 min. All live fluorescent 

imaging was performed on a Nikon Eclipse-Ti microscope and with a Plan Apo VC, 60×, 1.40 NA oil  or 

a Plan Apo VC 100× N.A. 1.40 oil objectives (Nikon). The microscope is equipped with a motorized 

stage (ASI; PZ-2000), a Perfect Focus System (Nikon), ILas system (Roper Scientific France/PICT-

IBiSA, Curie Institute) and uses MetaMorph 7.8.0.0 software (Molecular Devices) to control the camera 

and all motorized parts. Confocal excitation and detection is achieved using a 100 mW Vortran Stradus 

405 nm, 100 mW Cobolt Calypso 491 nm and 100 mW Cobolt Jive 561nm lasers and a Yokogawa 

spinning disk confocal scanning unit (CSU-X1-A1N-E; Roper Scientific) equipped with a triple-band 

dichroic mirror (z405/488/568trans-pc; Chroma) and a filter wheel (CSUX1-FW-06P-01; Roper 

Scientific) containing BFP (ET-DAPI (49000), GFP (ET-GFP (49002)) and mCherry (ET-

mCherry(49008)) emission filters (all Chroma). Confocal images were acquired with a QuantEM:512 

SCEMCCD camera (Photometrics) at a final magnification of 110nm (60x objective), 67 nm (100x 
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objective) per pixel, including the additional 2.0x magnification introduced by an additional lens mounted 

between scanning unit and camera (Edmund Optics). All EBP-2::GFP imaging was performed at 1 frame 

per second (fps) and when necessary Z stacks were taken with 1 µm step size and maximum intensity 

projections and further processing was performed using ImageJ software (NIH). For Photoactivation of 

PA-GFP-TBA-1, the red mKate2 fill was used to find the neuron ROI, photoactivation was performed 

with the 405 nm laser at 8-12% and imaged 1 fps for at least 200s. The SRRF optimized image of UNC-

44::GFP; MAPH-1, an acquisition of 150 frames at 1 fps was taken and processed with the nanoJ plugin 

(Gustafsson et al., 2016) in imageJ. 

The PVD neuron morphology, RAB-3::mCherry  and MAPH-1 localization were imaged on a LSM 880 

confocal Laser Scanning Microscope with Plan Apo 63×/1.2 Imm Corr objective (Zeiss). All other 

images were acquired using LSM700 (Zeiss) with a 63x/1.40 Oil or 40x/1.30 Oil DIC objective using 

488nm and 555nm laser lines. 

Animal locomotion was imaged on a ZEISS Axio Zoom.V16. 

Analysis of FRAP experiments. To analyze the recovery of fluorescence, 20 pixel round selections were 

made in regions of bleached and non-bleached GFP fluorescence as well as in the background. The 

average fluorescence intensity was measured using imageJ for each frame, the background intensity was 

subtracted from the bleached and non-bleached areas and normalized to the 5 frame average prior to the 

bleach. The bleached area was then divided by the non-bleached area, to correct for bleaching due to 

imaging and the first frame after bleach was set to 0. To calculate the immobile fraction was calculated as 

1-the average recover from 50-100s.  

To correct for drift time lapse acquisitions were corrected with the imageJ plugins Template Matching or 

StackReg. Images and time-lapse acquisitions were rotated and if necessary flipped to have the anterior to 

the left and ventral side down. 

Quantification of RAB-3::mCherry intensity. Z-stacks were acquired with stepsize of 1 µm and sum-

projections were made of 6 planes for the axon, the cell body or the proximal anterior dendrite. Selections 

of 120x5 µm (axon), 10x10 µm (cell body) and 25x2 µm (dendrite) were made in imageJ and the 

integrated density was measured 

TIRF-SIM setup and optical path. TIRF-SIM (structured illumination microscopy) is based on exciting 

the sample with evanescent sinusoidal illumination patterns and detecting the fluorescence response on a 

camera. Our custom-built TIRF-SIM setup is shown in Figure S4. The optical design is based on the use 

of a digital micromirror device (DMD, DLP V-9501 VIS, ViALUX, pixel pitch 10.8 μm) as spatial light 
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modulator. We employed binary stripe patterns in 3 orientations and with 3 phases each. The 

demagnification of the DMD plane to the sample plane amounts to a factor of 300, resulting in sinusoidal 

interference patterns on the sample with a period of approximately 170 nm. This corresponds to an 

excitation numerical aperture (NA) of 1.44 of the first orders. The DMD also serves as master clock for 

the trigger protocol. The detailed optical path of the setup comprises the excitation laser with 500 mW 

power at 473 nm wavelength (gem473, LaserQuantum), followed by a 10x telescope (AC080-010-AML 

and AC254-100-A-ML, Thorlabs) to expand and collimate the laser beam. A half wave plate 

(AHWP10M-600, Thorlabs) establishes linear polarization after the DMD. The diffracted light from the 

DMD is collected by a lens (AC508-500-A-ML, Thorlabs) and passes through a quarter wave plate 

(AQWP05M-600, Thorlabs), generating circular polarization. Neutral density filters (NDC-50C-2, 

Thorlabs) provide fine control over the intensities of the individual diffracted beams. A custom 

aluminium mask is placed in the Fourier plane of the DMD and serves as spatial filter to block unwanted 

diffraction orders originating from the binary stripe pattern. Only the required first orders pass through 

and create the sinusoidal intensity pattern on the sample. A segmented polarizer (colorPOL VIS087 BC3 

CW01, CODIXX) then generates azimuthal polarization, which is necessary to achieve maximum 

modulation depth of the sinusoidal pattern at the sample. The combination of the fast-switching DMD 

with the segmented polarizer implies only mechanically fixed and stable components with no moving 

parts. The beams are relayed by two lenses (#49-367, Edmund Optics, AC254-300-A-ML, Thorlabs) and 

then reflected by two identical, but rotated dichroic beam splitters (ZT405/473/561rpc, AHF) to eliminate 

detrimental polarization effects for s- and p-polarized reflected light. The diffraction spots are projected 

close to the edge of the back focal plane of the objective (UAPON 100XOTIRF, Olympus), which is 

mounted onto a z-piezo stage (N-725.2A PIFOC, Physik Instrumente). The beams interfere at the focal 

plane at a NA of 1.44 and generate the desired sinusoidal illumination pattern on the sample. The emitted 

fluorescence is collected by the same objective, passes through the dichroic mirror, the tube lens and a 

combination of emission filters (ZET405/473/561NF, AHF; FF01-503/LP-25, Semrock; HQ515/30m, 

Chroma) to reject unwanted excitation light and achieve lowest residual background. A sCMOS camera 

(Zyla- 4.2P-CL10, Andor) detects the fluorescence signals in the mode ‘rolling shutter global clear 

external triggering (non-overlap mode)’. The size of the FOV on the sample is defined by a circular mask 

in the displayed DMD pattern and amounts to approximately 25μm.  

Each super-resolved image was reconstructed from 9 raw widefield images by adapted code of fairSIM in 

Java as described in (Muller et al., 2016). Lines profiles from >11 different randomly chosen cells of at 

least 3µm in length (see Figure 4E) from reconstructed images were extracted and the dominant 

frequency was extracted by Fourier decomposition in IgorPro and plotted in Figure 4E. Autocorrelation 

plots were calculated from line profiles across axons in IgorPro (Wavemetrics, Lake Oswego, Oregon). 
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Immunoprecipitation experiments 

C. elegans liquid culture. Liquid cultures were started with semi-synchronized L1 animals obtained by 

starvation. Grow 12 worms on 60 mm nematode growth media (NGM) plates with OP50 bacteria until 

there are no bacteria were left on the plates and the plates were covered with starved L1 animals. All 

animals were washed off the plates with M9 and transferred to a 2 l Erlenmeyer flask containing 500 ml 

S-medium supplemented with penicillin-streptomycin (5000 U/ml, Life Technologies 15070-63) diluted 

1:100, and nystatin suspension (10,000 U/ml, Sigma N1638) diluted 1:1000. A pellet of OP50 E. coli 

bacteria obtained from a 0.5 l overnight culture in lysogeny broth (LB) was added as food source. 

Animals were incubated at 20 °C shaking at 200 rpm for 6 days. To harvest the animals, the culture was 

transferred to 50 ml conical tubes and cooled on ice for 20 min. Animals were then pelleted by 

centrifugation (all centrifugation steps in this protocol were performed at 400 g for 2 min at 4 °C). After 

aspirating the supernatant, animals were pooled in a single 50 ml tube, and washed twice in ice-cold M9. 

After the second wash step, animals were resuspended in 20 ml of ice-cold M9, followed by the addition 

of 20 ml of ice-cold 60 % sucrose in H2O. After vigorous mixing of the sucrose/worm mixture, 4 ml of 

ice-cold M9 was gently layered on top, and the worms were centrifuged at 400 g for 2 min at 4 °C. A 

layer of animals was now visible on top of the sucrose, while contaminants sedimented at the bottom. The 

sucrose float steps were performed as quickly as possible, as otherwise the layer of animals failed to form 

properly. To maximize recovery, 30 ml of supernatant was aspirated from the sucrose float, and 

distributed into four 50 ml tubes that were subsequently filled by addition of room-temperature M9. The 

room temperature M9 allowed the animals to digest OP50 bacteria in their intestine. The four tubes were 

placed on ice to cool down for 30 min, after which the animals were washed twice in lysis buffer (150 

mM NaCl, 25mM Tris pH 7.5, 1 % Triton). During the first wash the animals were again pooled into one 

tube. After a final wash, C. elegans was divided in four 15 ml TPX hard plastic tubes and as much lysis 

buffer as possible was removed, and the C. elegans pellet were frozen in liquid nitrogen and stored at −80 

°C. 

C. elegans Lysis. The C. elegans pellets were lysed by sonication using a Bioruptor (diagenode) fitted 

with a 15 ml tube holder. For this 1 ml of worm pellet was mixed with 1 ml of 2x lysis buffer (50 mM 

Tris-HCl, pH 7.5, 300 mM NaCl, 2% Triton, 0.5 tablet of protease inhibitor (Roche, 05892791001)). 

Pellets were gently swirled until thawed. Tubes containing the lysates were placed in the Bioruptor in a 

bucket filled with ice-water. Samples were lysed 15 times for 30 s, with 30 s intervals. After the third and 

sixth lysis, lysates were mixed by gently swirling the tube. To remove cellular debris, lysates were 

distributed to 2 ml Eppendorf tubes, centrifuged at 13,000 rpm for 30 min at 4°C. The supernatant was 
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incubated with GFP-trap magnetic beads (ChromoTek) for 2 hr at 4°C. The beads were then washed 3 

times with the lysis buffer and frozen in liquid nitrogen and stored at −80 °C for mass spectrometry 

analysis.  

Mass Spectrometry Beads were resuspended in 20 µL of Laemmli Sample buffer (Biorad) and 

supernatants were loaded on a 4-12% gradient Criterion XT Bis-Tris precast gel (Biorad). The gel was 

fixed with 40% methanol/10% acetic acid and then stained for 1 h using colloidal coomassie dye G-250 

(Gel Code Blue Stain Reagent, Thermo Scientific). After in-gel digestion, samples were resuspended in 

10% formic acid (FA)/5% DMSO and analyzed with an Agilent 1290 Infinity (Agilent Technologies, CA) 

LC, operating in reverse-phase (C18) mode, coupled to an Orbitrap Q-Exactive mass spectrometer 

(Thermo Fisher Scientific, Bremen, Germany). Peptides were loaded onto a trap column (Reprosil C18, 3 

µm, 2 cm × 100 µm; Dr. Maisch) with solvent A (0.1% formic acid in water) at a maximum pressure of 

800 bar and chromatographically separated over the analytical column (Zorbax SB-C18, 1.8 µm, 40 cm × 

50 µm; Agilent) using 90 min linear gradient from 7-30% solvent B (0.1% formic acid in acetonitrile) at a 

flow rate of 150 nl/min. The mass spectrometer was used in a data-dependent mode, which automatically 

switched between MS and MS/MS. After a survey scan from 350-1500 m/z the 10 most abundant 

peptides were subjected to HCD fragmentation. MS spectra were acquired in high-resolution mode (R > 

30,000), whereas MS2 was in high-sensitivity mode (R > 15,000). Raw files were processed using 

Proteome Discoverer 1.4 (version 1.4.0.288, Thermo Scientific, Bremen, Germany). The database search 

was performed using Mascot (version 2.4.1, Matrix Science, UK) against a UniProt database (taxonomy 

C. elegans). Carbamidomethylation of cysteines was set as a fixed modification and oxidation of 

methionine was set as a variable modification. Trypsin was specified as enzyme and up to two miss 

cleavages were allowed. Data filtering was performed using percolator, resulting in 1% false discovery 

rate (FDR). Additional filters were search engine rank 1 and mascot ion score >20. 

Biotin-streptavidin pull-down and western blot Hek293 cells were co-transfected with BirA together with 

the indicated bio-mCherry and gfp constructs and incubated for 24-36 hours. Cells were harvested in ice-

cold PBS and lysed with lysis buffer (100 mM Tris-HCl pH 7.5, 150 mM NaCl, 1% Triton X-100 and 1x 

protease inhibitor cocktail). Cell lysates were centrifuged at 13,000 rpm for 10 minutes and the 

supernatants were incubated with Dynabeads M-280 (Invitrogen) which were pre-blocked in buffer 

containing 20 mM Tris, pH 7.5, 20% glycerol, 150 mM NaCl, and 10 µg chicken egg albumin for 30 min 

followed by two washes of 2 min with wash buffer containing 20 mM Tris, pH 7.5, 150 mM NaCl, and 

0.1% Triton X-100. After incubating for 1 hr at 4°C, beads were washed 5 times with washing buffer. 

Samples were eluted with SDS/DTT sample buffer and boiled for subsequent western blot assay. For 

western blot, samples were loaded onto 10% SDS-PAGE gels and transferred to nitrocellulose membrane. 
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Membranes were blocked with 2% BSA (bovine serum albumin) in PBS/0.05% Tween-20. Primary 

antibodies (anti-GFP (ab290, abcam) and  anti-mCherry (632543, Clontech)) were diluted in blocking 

buffer and incubated with the membranes overnight at 4 °C, washed 3 times with PBS/0.05% Tween 20 

and incubated with secondary IRDye 680LT or IRDye 800LT antibodies for 45 minutes at room 

temperature. Membranes were then washed 3 times with PBS/0.05% Tween 20 and scanned on Odyssey 

Infrared Imaging system (LI-COR Biosciences) 

 

Statistical analysis 

For all quantifications, n= the number of individual animals analyzed. Statistical analyses were performed 

using GraphPad Prism software version 7.0. All bar diagrams represent mean SD statistics was performed 

using a Kruskal-Wallis test with Dunn’s correction, except for the analysis of Figure 4 and Figure S1 

where an unpaired t-test par used. 

Data in Figure 4E was tested using a non-parametric test with a Nemenyi post-hoc adjustment for 

multiple comparisons in IgorPro, using a significance level of a=0.05. The null hypothesis of an equality 

of the medians was rejected as shown in the pentagram in the inset and set 1 if the test statistics q > q_c 

and 0 if otherwise; q_c was determined to be equal to 2.8 for a=0.05 level of significance and k=5 groups. 
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FIGURE LEGENDS 

 

Figure 1 unc-119 is essential for neuronal microtubule organization 

(A) Schematic representation of the PVD neuron and its microtubule organization; it possesses two highly 

branched sensory dendrites and a single axon which connects to other neurons in the ventral nerve chord. 

Only the anterior dendrite has minus-end out microtubules (red), whereas the axon and posterior dendrites 

have plus-end out microtubules (blue) (Harterink et al., 2018; Taylor et al., 2015).  

(B-C) Representative kymographs and quantification of the microtubule orientation in the PVD anterior 

dendrite. EBP-2::GFP was expressed in the PVD to visualize growing microtubules using the Pdes-2 

promotor. EBP-2::GFP strains were single copy integration lines (Si) generated using mosSCI or were 

extrachromosomal lines (Ex). For unc-119 (Si) we used CRISPR to mutate the cb-unc-119 from the wild 

type (Si). Number of analyzed animals is indicated. Scale, 5 µm. 

(D) Representative images of synaptic vesicle localization in the PVD neuron marked by RAB-

3::mCherry. Cell body (CB) and dendrites are separately shown from the axon to minimize the 

autofluorescence. Asterisk, marks the cell body; arrowheads point to RAB-3::mCherry in the dendrites; 

scale, 20 µm. 

(E) Representative image of the PVD morphology in wild type and the unc-119 mutant. Scale, 20 µm. 

(F) unc-119::gfp knock-in animals. Expression is strongest in neurons, but can also be detected at low 

levels in non-neuronal cells such as the vulva cells and the seam cells. The locomotion of the gfp knock-in 

animals is not affected (Figure S1K), indicating that the fusion protein is functional. The red asterisk 

marks autofluorescent gut granules (small puncta) seen throughout the animal. Image were straightened 

using in imageJ. Scale, 50 µm 

(G) UNC-119::GFP FRAP in a dendrite bundle (Amphid) and axon bundle (VNC). Scale, 5 µm. 

(H-I) Average normalized intensity graph of UNC-119::GFP FRAP ± SEM (F) and the percentage 

immobile fractions after FRAP (G). Number of analyzed animals is indicated. 

Error bars represent SD; statistical analysis, Kruskal-Wallis test followed by Dunn’s multiple 

comparisons test; ns = non-significant, **p<0.01, ***p<0.005, ****P<0.001. 

See also Figure S1 
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Figure 2 UNC-119 forms a complex with UNC-44 (Ankyrin) and UNC-33 (CRMP) 

(A) Schematic representation of the protein fragments used for pull-down experiments. In grey are the 

UNC-33M (dark grey) and UNC-33L (light grey) specific N-termini; Nt  = N-terminus; Ct = C-terminus. 

(B) Streptavidin pull-down assay with extracts of HEK293T cells expressing BirA, bio-mCherry or bio-

mCherry-UNC-119 (bait) and the indicated GFP labeled proteins (prey) and analyzed by Western 

blotting. The GFP labeled proteins are indicated by red arrowheads 

(C) Streptavidin pull down of bio-mCherry labeled UNC-44 fragments and UNC-119::GFP. Proteins 

were separately expressed in HEK293T cells (UNC-44 fragments required longer incubation time for 

expression). 

(D) Streptavidin pull down of bio-mCherry or bio-mCherry labeled UNC-44 C-terminus (Ct) with UNC-

119::GFP and/or UNC-33L::GFP. UNC-44Ct was separately expressed from the GFP proteins. 

(E) Interaction model based on the pull-down experiments; where UNC-44 (Ankyrin) is drawn associated 

to membrane proteins (top) and spectrin (side) .  

 

 

 

Figure 3 UNC-44 (Ankyrin) anchors UNC-33 (CRMP) via UNC-119 

(A) unc-44::gfp knock-in animals show neuronal GFP expression. The animals are superficially wild 

type, but the locomotion somewhat affected (Figure S2A and S2B). Scale, 50 µm. 

(B) Magnification of the ALM neuron cell body (arrowheads) and axon (left), expressing the microtubule 

marker mKate2::MAPH-1 in the unc-44::gfp knock-in animal. SRRF was used to improve the resolution 

(Gustafsson et al., 2016). The small arrows indicate a vertically crossing motor neuron axon. Scale, 5 µm.  

(C) UNC-44::GFP FRAP in amphid nerves (dendrites), the ALM axon or ventral nerve cord (VNC, 

mainly axons). Scale, 5 µm. 

(D-I) Average normalized intensity graphs of UNC-44::GFP (D,F) and UNC-119::GFP FRAP (H) ± SEM 

and the percentage immobile fractions after FRAP (E,G,I) in the indicated tissues and mutants Number of 

analyzed animals is indicated. 

(J) Schematic representation of the three UNC-33 isoforms and GFP insertion. 
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(K) Expression of GFP labeled UNC-33 isoforms in the PVD neuron. Red asterisk marks autofluorescent 

gut-granules. Scale, 20 µm. 

(L) Quantification of minus-end out microtubules in the PVD anterior dendrite in wild type or unc-33 

mutant with or without PVD specific expression of GFP labeled UNC-33 isoforms. 

(M) FRAP of GFP labeled UNC-33 isoforms in the PVD anterior dendrite. Scale, 5 µm. 

(N-S) Average normalized intensity graphs of UNC-33::GFP FRAP ± SEM (N,P,R) and the percentage 

immobile fractions after FRAP (O,Q,S) in the indicated tissues and mutants.  Number of analyzed 

animals is indicated. 

Error bars represent SD; statistical analysis, Kruskal-Wallis test followed by Dunn’s multiple 

comparisons test; ns = non-significant, *p<0.05, **p<0.01, ***p<0.005, ****P<0.001. 

See also Figure S2 

 

 

Figure 4 The microtubule binding UNC-33L (CRMP) is anchored to the cortex via its N-

terminus 

(A-E) Superresolution imaging of primary neurons from isolated C elegans cultures. Representative 

images of cells extracted from animals stained for (L) UNC-70 b-spectrin, (M) UNC-44 Ankyrin, (N) 

UNC-119 UNC119, (O) UNC-33L CRMP and (P) UNC-33M CRMP with the corresponding (i) 

widefield, (ii) supersolved images and (iii) autocorrelation function. The inset in (i) shows a magnified 

region with widefield (green) and superresolved pattern (magenta). Scale bars in (i) = 5 µm; in (ii) = 1µm. 

(F) Quantification of the peak frequencies observed after fourier decomposition of the line profiles, 

extracted from the superresolved images. The inset shows the results from a non-parametric 

multicomparison test (Wilcoxon with Nemenyi post-hoc) for unequal sample size with H0 that the median 

is from the same population. If test statistic 0.7<q<3.5, H0=1, otherwise H0=0. 

 (G) Schematic representation of the different UNC-33 (CMRP) constructs used. 

(H) Expression if the indicated UNC-33 constructs in hypodermal seam cells. Arrowheads indicate 

cortical localized UNC-33LΔC. Scale, 5 µm 

(I) FRAP imaging of the indicated UNC-33 constructs in the PVD neuron 
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(J-Q) ) Average normalized intensity graphs of FRAP imaging of indicated UNC-33 constructs ± SEM 

(J,L,N,P) and the percentage immobile fractions after FRAP (K,M,O,Q) in the indicated mutants.  

Number of analyzed animals is indicated. Error bars represent SD; statistical analysis, unpaired t test; ns = 

non-significant, ***p<0.005, ****P<0.001. 

See also Figure S3 and S4 

 

Figure 5 The cortical anchor complex immobilizes the microtubule cytoskeleton 

(A)  Representative images of mKate2::MAPH-1 microtubule marker in the PVD in indicated mutants. 

(see also video 3). Scale, 20 µm. 

(B) Representative images of PVD neuron morphology of the indicated mutants. Scale, 20 µm. 

(C) Representative stills and kymograph of microtubule dynamics in the indicated mutants, visualized 

using PA-GFP::TBA-1 (tubulin) expressed in PVD. The photoactivated region is indicated. Scale, 5 µm 

for the stills and 2 µm for the kymographs. 

(D) Classification of the microtubule dynamics presented in (C). The number of analyzed animals is 

indicated on top. 

 

Figure 6  kinesin-1 is sliding microtubule in the absence of the cortical anchor complex 

(A) Representative stills and kymograph of microtubule dynamics in the indicated mutants, visualized 

using PA-GFP::TBA-1 (tubulin) expressed in PVD. The photoactivated region is indicated. Scale, 5 µm 

for the stills and 2 µm for the kymographs. 

(D) Classification of the microtubule dynamics presented in (A). The number of analyzed animals is 

indicated on top.  

 

Figure 7 UNC-33 (CRMP) anchoring by UNC-119 is essential for neuron development and 

animal locomotion 

(A) Model: The microtubule binding UNC-33L (CRMP) is cortically anchored to UNC-44 (Ankyrin) via 

UNC-119. In the absence of UNC-119 or the long UNC-33 isoform the putative microtubule binding 

UNC-33 is not anchored to the cell cortex. By fusing the UNC-33S (CRMP) to the GFP nanobody 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/783837doi: bioRxiv preprint first posted online Sep. 26, 2019; 

http://dx.doi.org/10.1101/783837


(vhhGFP) we can artificially cortically anchor UNC-33 by expressing the fusion protein in the unc-

44::gfp knock-in animal. If the main function of UNC-119 neuron development is to anchor UNC-33L to 

the cortex, we expect that the artificial attachment of UNC-33 will suppress the unc-119 and unc-33 

mutant phenotype. 

(B-C) Quantification of minus-end out microtubules in the PVD anterior dendrite (B) and examples of 

PVD neuron morphology (imaged with PVD>EBP-2::mKate2) (C) with or without PVD specific 

expression of vhhGFP::UNC-33S together with the unc-44::gfp knock-in in indicated genetic 

backgrounds. Scale, 20 µm 

(D) Quantification of the animal locomotion upon expression of pan-neuronal vhhGFP::UNC-33 in the 

indicated backgrounds. 

(E) Example tracks of indicated genotype during 3 minutes (maximum projection). Scale, 1 mm. 

Error bars represent SD; statistical analysis, Kruskal-Wallis test followed by Dunn’s multiple 

comparisons test; ns = non-significant, **p<0.01, ***p<0.005. 

  

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/783837doi: bioRxiv preprint first posted online Sep. 26, 2019; 

http://dx.doi.org/10.1101/783837


SUPPLEMENTARY FIGURE LEGENDS 

 

Figure S1 supporting Figure 1 

(A-C) Quantification of microtubule  orientation using EBP-2::GFP in the PVD axon (A), the non-ciliated 

PHC dendrite (B) and the ciliated URX (C) and PQR (D) dendrites.  

(E-G) Quantification of RAB-3::mCherry fluorescence intensity in the axon (H), the cell body (I) and the 

proximal anterior dendrite. Intensities are arbitrary units (a.u.). 

(H-I) Quantification of RAB-3::mCherry puncta in the axon (K) and proximal anterior dendrite (L).  

(J) Quantification of PVD anterior dendrite primary, secondary and quaternary branches, within 200 µm 

from the cell body.   

(K) Quantification of the relative axon length in the ventral nerve cord 

(L) Quantification of the anterior dendrite outgrowth towards the FLP. 

(M) Quantification of animal locomotion  during 3 min of forward motion (KI = knock-in).  

Number of analyzed animals is indicated. Error bars represent SD; statistical analysis, unpaired student T-

test for (A-L) and Kruskal-Wallis test followed by Dunn’s multiple comparisons test for (K); ns = non-

significant, *p<0.5, ***p<0.005, ****p<0.001. 

 

Figure S2 supporting Figure 3 

(A) Quantification of animal locomotion  during 3 min of forward motion (KI = knock-in). 

(B) Quantification of animal stopping or reversing locomotion during 3 minutes. Animals stopping for 

longer than 5 sec were not included. 

(C-F) Average normalized intensity graphs of UNC-44::GFP and UNC-119 FRAP in the VNC ± SEM 

(C,E) and the percentage immobile fractions after FRAP (C,E) in the indicated mutants.   

(G) Quantification of RAB-3::mCherry localization in the PVD neuron in wild type and unc-33 mutant 

upon single copy (mosSCI) expression of internally gfp tagged UNC-33M or UNC-33L in the PVD.  
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Number of analyzed animals is indicated. Error bars represent SD; statistical analysis, Kruskal-Wallis test 

followed by Dunn’s multiple comparisons test; ns = non-significant, *p<0.05, **p<0.01, ***p<0.005,  

****p<0.001. 

 

Figure S3 supporting Figure 4 

(A) Localization of the three GFP-tagged UNC-33 isoforms lacking the microtubule binding C-terminus 

expressed in the PVD neuron. 

 (B) Quantification of minus-end out microtubules in the PVD anterior dendrite, in wild type and unc-33 

mutant expressing GFP tagged UNC-33L lacking the microtubule binding C-terminus. 

 Number of analyzed animals is indicated. Error bars represent SD; statistical analysis, Kruskal-Wallis 

test followed by Dunn’s multiple comparisons test; ns = non-significant, *p<0.05.  

 

Figure S4 supporting Figure 4 

(A) TIRF-SIM (structured illumination microscopy) setup used for the imaging of the cultured C. elegans 

neurons. Details can be found in the material and methods. 

(B-F) Representative power spectral density of the periodicity pattern showing the main frequency of (B) 

UNC-70, (C) UNC-44, (D) UNC-119, (E) UNC-33L and (F) UNC-33M per µm. Black denotes a fit to a 

Lorentzian curve. 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/783837doi: bioRxiv preprint first posted online Sep. 26, 2019; 

http://dx.doi.org/10.1101/783837


SUPPLEMENTAL INFORMATION 

 

Table 1 

Mass spectroscopy identification of co-immunoprecipitated proteins for the unc-119::gfp knock-in 

immunoprecipitation. Wildtype (N2) and a strain expressing GFP in neurons (OH441) were used as 

control strains. Find all identified proteins in separate tabs and the analysis of the data in the combined 

tab. To analyze Affinity Purification Mass Spectrometry Data, a Fold Change score (FC-Score) is 

calculated based on computing the ratio of average normalized spectral counts (PSMs) in bait 

purifications versus negative controls using CRAPome (Mellacheruvu et al., 2013).  

 

Table 2 

Overview of all strains and constructs used in this study and how these were made  

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/783837doi: bioRxiv preprint first posted online Sep. 26, 2019; 

http://dx.doi.org/10.1101/783837


SUPPLEMENTAL VIDEOS 

Video 1 related to Figure 3 

FRAP microscopy of UNC-33L::GFP in the PVD neuron in wild type and unc-44 mutant animals. The 

FRAP was set at 0s (regions are indicated); time, min:sec. 

 

Video 2 related to Figure 4 

Expression of various GFP tagged UNC-33 constructs in the seam cells. Time, min:sec. 

 

Video 3 related to Figure 5 

Visualization of the microtubule cytoskeleton using the microtubule binding protein MAPH-1, in the 

indicated genetic backgrounds. Time, min:sec. 

 

Video 4 related to Figure 5 

Expression of PA-GFP::TBA-1 (tubulin) expressed in PVD neuron in indicated genetic backgrounds to 

visualize microtubule dynamics. Time, min:sec.  

 

Video 5 related to Figure 6 

Expression of PA-GFP::TBA-1 (tubulin) expressed in PVD neuron in indicated genetic backgrounds to 

visualize microtubule dynamics. Time, min:sec. 

 

Video 6 related to Figure 7 

Direct coupling of UNC-33 to UNC-44 by expressing vhhGFP::UNC-33S using a pan-neuronal Prab-3 

promoter in the unc-44::gfp knock-in animals rescues animal locomotion (wild type is the unc-44::gfp 

knock-in). 
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