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Abstract
Proprioception and visceral mechanosensation provide
important information about the location and deformation of the
body parts in space and time. These deformations arise from
muscle contraction during locomotion, but also from volume
changes in organs that are subjected to stresses as a part of
their physiological function. These internal morphodynamics
give rise to periodic contraction–relaxation cycles with sur-
prisingly constant amplitudes and the maintenance of these
optimal driving patterns is remarkably robust against external
and internal perturbations. One of the underlying reason for
this robustness is an internal feedback mechanism in which
specialized sensory cells and neurons signal the mechanical
deformation of the inner workings of our organs, from the body
to the brain, which subsequently adjust the driver to a prede-
termined physiological setpoint. Here, we review recent prog-
ress in the field of visceral mechanosensation and
proprioception in Caenorhabditis elegans and discuss how
future studies with this model can be used to gain insight into
mechanosensory body–brain interactions in mammals.
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Introduction
Interoception and the force from within
The five classical senses are the windows through which
the brain constantly receives information about the
surrounding. While hearing, vision, and olfaction provide
www.sciencedirect.com
a glimpse into the outside world from the far-field, the
sense of touch requires physical contact between the
sensory cell and the object to explore information about
the mechanical properties of the environment [1]. In
addition, the brain also constantly receives information
from the inner workings of our body [2,3]. The most
well-known is the vestibular sense during which
mechanosensors in the inner ear adjust the position and

orientation of the body and proprioception [4,5], the
unconscious sense of our self.

Visceral mechanosensation, on the other hand, has
received wide attention only recently [6]. The me-
chanical bodyebrain interaction include, but are not
limited to innervated organs that are subjected to
morphodynamics and volume changes as a part of their
physiology. In mammals, sensory neurons of vagus nerve
innervate these target organs and generate a feedback
signal upon mechanical deformation, that is, subse-

quently relayed to brain to adjust the “driver” setpoint
[2]. At the molecular level, Piezo proteins constitute a
major component of the mechanosenstive ion channel
for proprioception [7], lung inflation [8], baroreception
[9,10], bladder release [11] and possibly the gastroin-
testinal tract [12], but we have yet to learn how me-
chanical stresses distribute within the cellular and tissue
environment to stabilize the active conformation of the
ion channel. Because all of these processes require Piezo
ion channels for their neuronal function in mammals,
one is inclined to assume that a universal, common

mechanism underlies mechanoreceptor activation [13].

Ion channel gating: Where does the force come from?
Unlike light which travel across empty space, mechan-
ical stresses, like sound, require a medium to propagate,
with a rate and range that depends on the viscoelastic
moduli. In principle, the elastic modulus is an emergent
property of the sum of all molecular interaction that
constitute the material. However, a general, anisotropic,
linear elastic material is described by 21 material con-
stants (generalized Hooke’s law [14]). In such a sce-
nario, a mechanical stress distributes differently along
21 distinct pathways (e.g. with different velocity and
extent). In tissues, this is further confounded by the

fact that mechanical properties are themselves a
function of deformation (so called nonlinear materials
[15]). Does the diversity in mechanoelectical (MeT)
transduction channel reflect this mechanical diversity?
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2 Neuroscience of Somatosensation
Perhaps. Recent data suggests that different ion chan-
nels select and transduce different force-transmission
pathways and loading conditions [9,16e18], either
during static or dynamic stresses [19], distension [7,20]
and compression [21,22]. Even though the location and
morphology of many mechanoreceptor cells is likely
optimized for sensitivity to a mechanical stimulus
[23,24,10,3] (Figure 1), a particular ion channel and its

associated proteins must be tuned to maximize
Figure 1

Mechanoreceptor function in C. elegans. a: Classification, location and morp
from the outside, body wall muscle contraction and internal morphodynamics
action and functional significance. c: Expression profile of known and hypoth
vertical lines indicate proprioceptors and proposed interoceptors, blue lines ind
the dots is proportional to expression level. Data extracted from the study by Ta
Interactive Chart.
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direction selectivity of the stimulation [25]. The
ongoing debate is best illustrated with NOMPC, the
founding member of the TRPN family [123], which
originally embodied the gating spring hypothesis [26]
but was recently shown to be involved in compressive
mechanosensitivity in nematodes [18], and might itself
be gated under compressive stresses [21,27]. Caeno-
rhabditis (C.) elegans offers a huge repertoire of mecha-

nosensitive receptor cells with ion channels that are
hology of mechanoreceptor cells involved in sensing mechanical stimulus
. b: Mechanoelectrical transduction (MeT) channels, their known site of
esized MeT channels in each neuronal class and somatic tissue. Orange
icate exteroceptors involved in touch and surface composition. The size of
ylor et al. [110]. High resolution interactive chart accessible under this link:
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Mechanosensitive body–brain interactions Krieg et al. 3
tuned to a particular exteroceptive, interoceptive or
proprioceptive process (Figure 1). Thus, this review is
dedicated to our (mis)understanding of the processes
that drive our most fundamental feedback mechanism
on visceral morphodynamics and what we can learn from
C. elegans as a model animal.
Proprioception
The mechanical coordination of locomotion
C. elegans moves itself forward using dorso-ventral
contraction of their body wall muscles, which leads to a
sinusoidal locomotion pattern with a constant amplitude
that is remarkably robust against external perturbations.

Of the 302 neurons in C. elegans, more than a third have
been described to be mechanosensitive and a large frac-
tion of them are sensitive to internal muscular contrac-
tions and stresses generated during body movement,
owing to the importance of coordinated locomotion for
animals survival. Among the best characterized pro-
prioceptors are the motor neurons themselves [28,29],
including A, B, and D-type neurons, and possibly muscles
(based on the expression of mechanosensitive TMC-1)
[30]. In particular, ventral and dorsal B-type motor neu-
rons propagate curvature information from anterior to

posterior body segments [28], are phase-locked to the
body angle during forward locomotion, and opposite in
phase to one another. Interestingly, these oscillations
persist also in neurons physically and functionally decou-
pled from the rest of the network [31] or behaviorally
silent animals [32], suggesting that these patterns can be
entrained into the network. However, the identity of the
mechanosensitive ion channel is not known in B-type
motor neuron, and neither was it shown that the motor
neurons can sense mechanical stresses cell autonomously
[33]. Even though A-type motor neurons show a similar
functional specialization for backward locomotion [34], it

is not yet entirely clear to what extent A-type motor
neurons use proprioception to tune the backward loco-
motion wave. In addition to A-type neurons, DVC pre-
sents a likely candidate for backward proprioception,
based on its synaptic polarity and mechanosensor
expression [35]. Further supporting the role of mecha-
nosensitivity of the motor circuit comes from a recent
study, in which direct mechanical stimulation of the
dendrites ofD-typemotor neurons in vivo resulted in large
mechanosensitive currents [36] that depended on the
DEG/ENaC ion channel unc-8 [36]. Thus, one may spec-

ulate that D-type neurons are proprioceptive, and indeed,
unc-8mutants also showadecreasedbody curvature during
forward locomotion [37], even though it is not clear if
UNC-8 regulates body posture through D-type neurons.
The study further showed that this stretch signal sup-
presses reversal behavior through direct, synaptic inhibi-
tion of AVA [36], but no prediction can bemade if D-type
activity is phase locked to body bending angle. In sum-
mary, D-type motor neurons have two roles, as they relax
body wall muscles, and have a proposed proprioceptive
www.sciencedirect.com
activity. How the proprioceptive signals and the motor
controlwithin theD-typeneurons aredecoupled, andhow
the proprioceptive activities of B-type and D-type neu-
rons are coordinated, is an area for future research.

The aforementioned dual function of a single neuron in
behavioral control is a common principle by which a
compressed nervous system makes “space” for all

necessary computations [38]. DVA, for example, is
another proprioceptor with a dual regulation [39], which
adjusts body posture positively through neuropeptides
NLP-12 [40] or two-pore K channels TWK-16/TREK2
[18] and negatively through TRP-4/NOMPC and
UNC-70/b-spectrin [39,18]. How does the dual regula-
tion of DVA coordinate proprioception? A recent study
suggested that TRP-4-dependent Ca2þ activity in DVA is
locally confined to ventral body bends, and limited by
stretch-dependent activity of the hyperpolarizing potas-
sium channel TWK-16 [18]. This compartmentalized,

local signalling thus complements the local mechano-
sensing of the motor system. Such parallelization of
neuronal processing might be a key feature of a nervous
system with neurons at a small scale limit that are
subjected to intrinsic channel noise [41,42].

The polymodal sensory neuron PVD is well known for its
capability to sense harsh touch [43] and proprioceptive
inputs [44]. This dual function relies on two different
sets of DEG/ENaC/ASIC ion channels, DEGT-1 for
nociception and DEL-1, UNC-8, and MEC-10 for pro-

prioception, respectively [45]. The ion channel trio
form heteromers to activate calcium transients during
sinusoidal locomotiondsignals that are restricted to the
proximal dendrites (2�,3�) of PVD and cause a local
activation of NLP-12 release. The most distal dendrites
(4�), however, were only required for harsh body touch,
consistent with the localization of DEGT-1. Impor-
tantly, the movement-induced Ca2þ signals activated
locally, but did not spread throughout the axondon the
contrary, harsh touch induced a global Ca2þ response
[45]. This indicates that local processing of sensory in-
formation represents a key component of the compu-

tational repertoire and can only happen through an
electrical compartmentalization of the elaborate den-
dritic structures. Such compartmentalization was also
shown for RIA [46] and DVA [18]. In contrast to PVD
and RIA, the compartmentalization in DVA is not
structurally confined, but dynamically regulated by
emergent mechanical stresses due to body bending
(Figure 2a). An interplay between a stretch-sensitive
TWK-16/TREK2, preventing misfiring and suppression
of neuronal activity under stretch, and the compression
sensitive TRP-4 is thought to generate a locally confined

“active sensory zone” and read out movement-induced
stresses originating in the spectrin cytoskeleton [18]
(Figure 2a,b). Together, PVD and DVA constitute two
neurons in which different ion channels select different
force transmission pathways.
Current Opinion in Neurobiology 2022, 75:102574
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Figure 2

Multiscale force transmission during proprioception. a: Compressive and tensile stresses emerge in the spectrin cytoskeleton due to positive and negative
curvatures reminiscent of forward crawling. The same animal expressing a tension sensitive FRET reporter is immobilized inside a curved microfluidic
channel while recording confocal images in two different body postures. On the convex and concave side, FRET values are lower or higher, respectively,
than in straight configuration indicating that spectrin can bear extension and compression. After the study by Das et al. [18] b: Neuronal response to
mechanical deformation. Snapshots of calcium dynamics in SMDV and DVA proprioceptors. Activity of both neurons arise during ventral bends, when
their axon is under compression. Ventral side towards the bottom. c: Proposed molecular deformations to imposed compressive mechanical stress. i)
Average projection density of NOMPC derived from CryoEM in top and side view [111]. Reproduced with permission from [1,122] ii) A finite element model
of NOMPC subjected compressive stresses compared to force free state. The graph shows the result of a simulation of the force required to deform the
ankyrin repeat domain. Upon intersubunit contact, force rises abruptly, indicating stiffening of the domains. Compression is linked to rotation of the
transmembrane domain and pore opening. Reproduced with permission from [21] iii) Experimental cell-attached electrophysiology of a single channel
under negative (suction) and positive (pushing) pressure [27]. Green line represent cells with without NOMPC.

4 Neuroscience of Somatosensation
Computational models for C. elegans body–brain
interactions
A large diversity of computational models have been
deployed to understand proprioception in vertebrates and
invertebrates [47]. The known structural connectome of

C. elegans offers unprecedented possibilities to visualize
the impact of peripheral and visceral mechanosensation
and predict animal behavior [48e50].
Current Opinion in Neurobiology 2022, 75:102574
Inspired by the wealth of functional and genetic infor-
mation [51,52], mathematicians and engineers aspired
to construct a biologically-informed network model and

predict behavior under the influence of the internal
mechanosensors. Niebur et al. were the first to imple-
ment the importance of proprioceptive feedback in a
purely mechanical model [53]; however, without
neuronal feedback. More recent models combined the
www.sciencedirect.com
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Mechanosensitive body–brain interactions Krieg et al. 5
neuroanatomy with physical constraints and active/pas-
sive actuators [54] that predict complex behavioral
repertoire [55] and differences in gait in changing en-
vironments [56,57]. This was accomplished with a
weighted, time-dependent suppression of the proprio-
ceptive signal [55] (with neuropeptides as the relevant
biological correlate) or incorporating the head motor
neuron circuit and the ventral nerve cord circuit [58].

However, despite the promise of network models to
provide a systems view of cell function, the importance
of some proprioceptors like DVA have not entered the
mathematical frameworks [56,58] explicitly. Most
models that incorporate mechanics make assumptions
that internal proprioceptors become stretch activated,
recent work in DVA; however challenges this paradigm
and was shown to activate under compressive stresses
[18]. When DVA was sensitized to elongational stresses,
it lead to a failure to propagate sinusoidal body wave,

whereas, modeling experimental finding in which DVA
activates under compressive stress and deactivated
under stretch is sufficient to propagate undulatory wave
during locomotion [18]. In summary, the connectivity
diagram is required but not sufficient to explain cell
functions, and information like synaptic polarity [51],
mechanical properties [59] and stress sensitivity need to
be considered.

Mapping the force transmission pathway during
proprioception
DVA with its single ventral axon was shown to activate
under compressive stresses, as a result of animal bending
towards the ventral side [18]. This counterintuitive
“stretch” receptor modality seems only unconventional

on first sight, but many other mechanoreceptor cells in
C. elegans, Drosophila [25,60] and mammalian osmor-
eceptors [61] have been shown to activate under
compressive stresses. SMD neurons, another class of
proprioceptive motor neurons, coordinate head bend
during forward locomotion [62], and their activity is
phase-locked with anterior body bends, a strong indi-
cator for proprioceptive activity [18,62,28]. Similar to
DVA, SMDV activated preferentially on ventral body
postures [62,63] (Figure 2b), indicating a preference for
their response to compressive stresses. Interestingly,
SMD also express TRP ion channel homologs, TRP-1

and TRP-2 of the TRPC family, which harbor short
intracellular ankyrin repeats. The much longer ankyrin
repeat domain of NOMPC, TRP-4 or TRPA homologs
were subject to a long debate about the gating spring
involved in ion channel gating under mechanical tension
[64]. Recent theoretical and experimental findings
however suggests that the solenoid ankyrin repeat
domain is critical to transfer compressive load from the
cytoskeleton to the transmembrane domains to elicit
gating of the pore and a stabilization of the open state
www.sciencedirect.com
probability under pressure [21,27,18] (Figure 2c).
TRPA-1 is yet another mechanosensitive ion channel
with a long ankyrin domain harboring 17 repeats with
orthologs in mouse and humans that are important for
various mechanical functions [65]. Mutations in trpa-1
gene modulate multiple behaviors, including the
response to nose touch, foraging but also proprioception
in the head [66]. The neuron through which TRPA-1

function in head bending proprioception, is not
known, neither whether or not it shares compressive
gating properties with NOMPC. In C. elegans, ankyrin-
containing proteins also influence mechanosensation
indirectly. UNC-44, a giant protein with a large ankyrin
repeat domain with 23 repeats was shown to associate
with TMC-1 ion channels through CALM-1/CIB as an
adaptor protein [30]. This ternary TMC/CIB/Ank
complex is critical for cell autonomous mechanosensa-
tion in OLQ and body wall muscles [30]. Through
coupling with UNC-33/UNC-119, UNC-44 was shown

to connect to microtubules [67], and it is interesting to
speculate whether or not stresses from the microtubule
cytoskeleton enable gating of TMC ion channels.

Corollary discharge
Along with proprioceptive feedback, the motor neurons
may themselves directly inform the central nervous
system and send an efferent copy to the brain [68]. Such
corollary discharge (CD) normally functions in the
nervous system to segregate self-caused sensations from
externally-caused sensations. It does this, partially, by
attenuating the nervous system’s response to self-
caused sensations. What sounds seemingly abstract has
important consequences and is targeted to suppress
sensory responses that might originate from internal

body movements. We experience this every day when
we move our eyeballs, such that the obtain picture is
“motion” corrected. Passively moving the eyeballs with
the finger tips leads to a shifting and tilting frame. CD
thus prepares the nervous system for a self-generated
stimulus. In C. elegans, evidence for CD has been
presented in the interneuron AIY [69] and RIA [46],
which both originate from the motor system. In contrast
to many system in which CD suppresses behavioral re-
sponses, the motor copy imprinted into AIY reinforces
and stabilizes a thermosensory response. With this
function, CD provides robustness and eliminates

spurious responses due to transient temperature fluc-
tuations [69]. In addition, the touch response was hy-
pothesized to initiate a CD signal [70], in which the
motor circuit silences antagonistic circuit through an yet
to be identified system of interneurons. More likely, the
motor circuit might generate a inhibitory signal to cancel
spurious activation of mechanosensors such as TRNs
that result from body deformations during fast move-
ment [71]. Taken together, peripheral input into the
brain involves mechanosensory, but also motor feedback.
Current Opinion in Neurobiology 2022, 75:102574
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6 Neuroscience of Somatosensation
Visceral mechanosensation
Despite our comprehensive knowledge of propriocep-

tion, our understanding how neurons sense organ
morphodynamics in C. elegans is limited. The sensation
of force in visceral processes presents a formidable
conceptual challenge, as the morphodynamic move-
ments need to be detected in the background of
omnipresent sinusoidal body waves that inevitably de-
forms the entirety of the body during locomotion. Not
surprisingly, many visceral processes, such as oviposition
[71,72] and evacuation [73] are coupled to a specific
motor state.

Osmosensation
ASH and other ciliated nose mechanoreceptor serve as

polymodal sensory neurons and are known to activate to
broad range of chemical, osmotic and mechanical stimuli
[74]. Dedicated internal osmosensors have not been
described in C. elegans, though the processes of the
excretory canal were proposed to act as an internal
osmoregulator [75]. The canal is tightly associated with
three fasciculated neurons, ALA, BDU and CAN [75].
Intriguingly, BDU [76] and ALA [77] have been pro-
posed as high threshold mechanosensors, and CAN
likewise expresses an unusually high amount of
mechanosensitive PEZO-1, the C. elegans homolog of the

mammalian Piezo proteins and MEC-4, the MeT chan-
nel for gentle touch (Figure 1c). Thus, it is intriguing to
hypothesize that these neurons might be involved in
mechanical osmoreception through sensing volume
changes in the canal processes.

Pharyngeal and intestinal activity
C. elegans has the ability to sense substrate texture,
which was associated to discriminating food sources
[78,79]. The neuronal substrates for this modality are
the ciliated CEP neurons and the enteric NSM neuron.
Whereas CEP senses the roughness of the substrate the
animals crawl on using TRP-4 ion channels [78], NSM
has sensory ending directed towards the internal

pharyngeal volume and expresses PEZO-1 [80]. It was
shown that PEZO-1 regulates the pharyngeal pumping
frequency in response to the osmolarity and stiffness of
the ingested food source [80]. Nevertheless, ingested
microspheres alone were not able to activate NSM
Calcium dynamics [81]. Because NSM activation se-
cretes serotonin and thus modulates different neurons
(Figure 3), PEZO-1, as well as DEL-3 and DEL-7
constitute important players in the C. elegans gutebrain
axis [81,80,82].

The C. elegans intestine is postsynaptic to few neurons
(AVL, DVB; [50]), but is likely involved in more sys-
temic regulation of behavior through asynaptic secretion
of neuropeptides. INS-11 [83] or PDF-2 [84] influences
food choice through neuronal signaling pathways that
control learning behavior and locomotion, while NLP-40
Current Opinion in Neurobiology 2022, 75:102574
activates DVB during evacuation [85]. INS-7 is another
intestinal insulin-like peptide with potential targets on
neurons to regulate lifespan [86]. Recently, gut-resident
bacteria were shown to produce precursor of the
neuromodulators octopamine [87], which influences
food preference through chemosensory neurons
(Figure 3). Because intestinal cells reportedly express
pezo-1 [82], it is interesting to speculate though if the

secretion of neuropeptides or neuromodulators is also
initiated mechanically through gut filling or visceral
morphodynamics as in the fly [88].

Mechanotransduction in the reproductive system
The timing of the egg-laying events follows a tightly
regulated sequence [89] and is subjected to mechanical
[90], humoral and proprioceptive [71] control. Even
though the absence or the presence of food [89] and
external forces [91] determine the extent of egg-laying,
internal mechanical signals prevent premature dispersal
of the eggs. As such, almost all components of the egg-
laying circuit, including command interneurons, motor
neurons as well as uterine and vulvas muscles were

proposed to be mechanosensitive [90,72]. The uv1 cells
of the egg-laying circuit are mechanosensitive cells that
become mechanically deformed during the passage of an
egg through the vulva. A few molecules that have been
attributed for this mechanosensitive process are
heteromers of the TRPV ion channels OCR-1,2 and 4
[92], although neither of these have been shown to be
intrinsically mechanosensitive [93]. The mechanical
activation of the uv1 cells as a result of eggs passing
through vulva, triggers the release of tyramine, which in
turn suppresses the egg-laying command interneuron

HSN through the chloride channel LGC-55 [72]. This
mechanical, negative feedback ensures that only mature
eggs pass at a given time and this prevents immature
release of progeny. HSN, on the other hand, also ex-
presses high amounts of PEZO-1 andMEC-4 (Figure 1c,
[82]), but it is still not clear if these neurons possess a
cell-autonomous mechanical activity. Interestingly, egg-
filling of the uterus has been proposed to sustain a burst-
like activity in HSN egg laying neurons, probably
through the volume-changes associated with egg accu-
mulation [72]. In this scenario, stretch of the uterine

muscles would activate vulval Ca2þ dynamics that in
turn stimulates HSN activity by an unknown mecha-
nism [94]. Likewise, PEZO-1 is strongly upregulated in
vulval muscles (vm) [80], providing a molecular corre-
late for mechanosensitive activity in vm. HSN is central
to integrate egg-laying with other systemic behaviors
and is responsible for promoting gusts of forward
movement through direct synaptic contacts with AVF.
HSN also provides synaptic input into ASH sensory
neurons and was shown to influence pharyngeal pump-
ing through serotonin [95], a possible mechanism to

sensitize chemoreceptors for search of optimal oviposi-
tion environment as found in Drosophila [96].
www.sciencedirect.com
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Figure 3

Current Opinion in Neurobiology

Interoceptive and proprioceptive functions and their mutual interactions. i) Pharyngeal food uptake is sensed mechanically by PEZO-1 in the enteric
neuron NSM and directs systemic responses through serotonin (5-HT) and its various receptors (MOD-1,SER-5,SER-7) on downstream neurons (AIY,
ASH, pharyngeal motor neurons). The neuromodulator represses crawling [81], and increases pharyngeal pumping [112] and the response to nose touch
[113]. ii) Serotonin also modulates egg laying through HSN and is subjected to an elaborate mechanical feedback mechanism (possibly involving
mechanosensitivity in uterine muscles (um), vulval muscles (vm), VC motor neurons and neuroendocrine cells (uv1) [90]). This also includes egg laying
events that are phased with motor state and body curvature, suggesting an underlying proprioceptive fingerprint through PDE [72,71]. iii) Due to the
coexistence of positive and negative curvatures during forward crawling, information is processed locally and confined in structural or electrical com-
partments, such as in PVD and DVA respectively. iv) No direct mechanosensitive function was shown for the gut, but intestinal release of octopamine
(OA) and neuropeptides regulates diverse metabolic functions [84] and neuronal decisions through INS-11 and OA on ASH [87,83], and evacuation motor
program through NLP-40 [85] on DVB.
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Table S1

Mechanoreceptor cells indicated in Figure 1a. According to the
origin of the sensory stimulus, exteroceptive, proprioceptive
and other interoceptive mechanosensors are classified. This
view is not exhaustive, and many more cells have been pro-
posed to be mechanosensitive, but are omitted from Figure 1a
and this table, awaiting more complete and sufficient character-
ization of their cell autonomous and functional sensitivity. For
more details see reviews on touch sensation and general
mechanosensation [119,121].

Exteroceptive

Function Neurons Reference

Gentle body touch TRNs [114]
Harsh body touch ALA, PVD [77,44]
Nose touch FLP, OLQ, ASH, IL1 [115,116]
Nictation IL2 [117]
Tail touch PHA, PHB, PHC [118,76]
Surface texture CEP, ADE, PDE [79]
Male tail sensors Many, e.g. HOB, SPC see [119]

Proprioceptive

Function Neurons Reference

Forward locomotion DVA [39,18]
Reverse locomotion DVC [35]
Head bending SMD [62]
Swimming ALM [120]
Forward locomotion PVD [44,45]
Body bending B, (D?, A?) [28,29,36]

Interoceptive

Function Neurons Reference

Egg laying uv1 [72]
Egg laying HSN [94]
Egg laying VC [90]
Osmosensation CAN (?) [75]
Food ingestion NSM [80]

8 Neuroscience of Somatosensation
Perspective: C. elegans as a model for
interoception
Mechanoelectrical transduction channels fulfil many
functions in various physiological contexts, in which the
receptive processes are subjected to different strain
tensors, compression, shear, torsion and extension.
Different activation modes have been proposed that in-
cludes the application of membrane tension gradients
[97], cell compression [18,98], normal stress [16] and
friction [99]. On one hand, it was shown that the same
ion channel, Piezo1, responds to different stresses, such
as pressure [22], tension [100] and fluid shear [101],
depending on the cellular context. On the other hand, it

is plausible that different ion channels do not act alone,
but in conjunction with auxiliary proteins that select and
funnel a dominating force transmission pathway.
Cadherins, for example, were shown to be necessary for
cytoskeleton-mediated gating of Piezo1 [102]. Likewise,
an unstructured domain on the intracellular side is
important for force-from-filament activation during me-
chanical stimulation [103]. NOMPC requires microtu-
bules [104], TMC-1 require ankyrins [30] and at least
partially, DEG/ENaCs in C. elegans TRNs require the
spectrin cytoskeleton for full touch sensitivity [105].

Because pezo-1 is expressed in nearly every cell in
C. elegans (Figure 1c), collaboration with cell-specific
auxiliary molecules might be important to select cell
specific functions. In addition, there is increasing evi-
dence that some ion channels conspire with different
partners depending on the physiological context
[106,93,107,45] and thus select alternative mechano-
transducion pathways, even in the same cell. Given the
coexpression of pezo-1with mec-4 in various C. elegans cells
with presumptive mechanoresponsive features
(Figure 1c), it is plausible to speculate a more gen-

eral principle.

The simple wiring pattern and powerful genetics pro-
vide unrivaled opportunities to unravel the endogenous
mechanotransduction pathways within the natural
environment of the mechanoreceptors. The combina-

tion of super-resolution microscopy [67], precision ge-
netics, force measurements and advanced mathematical
modeling [108,18,59] enables C. elegans as a premier
model to investigate axonal stability and transmission of
mechanical stresses leading to MeT activity during
intero- and proprioception (Figure 3). Cells can be
studied in situ by optical recording of neuronal activity in
freely behaving animals, but also in vitro to map specific
force transmission pathways. Importantly, the time-
scales and frequencies of the periodic deformations of
mammalian receptors during rhythmic organ morpho-
dynamics matches well with the proprioceptive dy-

namics of C. elegans locomotion [3]. In future, not the
forces applied through elastic substrates, glass pipettes
or optical tweezers, but the endogenous force trans-
mission pathways leading toMeTchannel gating need to
be charted. The knowledge of the sensory processing
Current Opinion in Neurobiology 2022, 75:102574
and integration promises advances in the development
of non-invasive bodyebrain devices to treat medical
conditions as diverse as rheuma, anxiety and stress dis-
orders [109]. We thus argue that C. elegans provides an
integrative model to study the most fundamental
questions that could culminate in the formulation of a
conceptual framework of how stress transmission path-
ways traverse the interoceptive sensory landscape.
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