1. Karimi et al. Automated Dual Olfactory Device for Studying Head/Tail Chemosensation in Caenorhabditis elegans. APL BioEngineering. 2024 pdf
    see also the APL SciLight feature here: https://doi.org/10.1063/10.0025863

  2. Porta-de-la-Riva et al. Bioluminescence as a functional tool for visualizing and controlling neuronal activity in vivo. Neurophotonics. 2024. pdf


  3. I Rabinowitch, DA Colón-Ramos, M Krieg, Understanding neural circuit function through synaptic engineering. Nature Reviews Neuroscience, 2024 pdf cover



  4. Catala-Castro et al, Active microrheology with a single, time-shared laser trap, BioRxiv, 2023


  5. Gat et al. Integration of spatially opposing cues by a single interneuron guides decision making in C. elegans. Cell Reports, 2023 pdf

  6. Porta-de-la-Riva et al. Neural engineering with photons as synaptic transmitters. Nature Methods. 2023 si material link


  7. Sanfeliu et al. A MEC-2/Stomatin condensate liquid-to-solid phase transition controls neuronal mechanotransduction during touch sensing. Nature Cell Biology. 2023


  8. Malaiwong et al. FLInt: Single Shot Safe Harbor Transgene Integration via Fluorescent Landmark Interference. G3: Genes|Genomes|Genetics. 2023. pdf


  9. Sanfeliu et al. Visualizing neurons under tension in vivo with optogenetic molecular force sensors. Methods in molecular biology, 2023 pdf

  10. Catala-Castro, et al. Exploring cell and tissue mechanics with optical tweezers, Journal of Cell Science, 2022 pdf


     

  11. Curiel, et al. Volumetric bioluminescence imaging of cellular dynamics with deep learning based light-field reconstruction, Communications Biology, 2022 pdf

     

  12. Falconieri, et al. Axonal plasticity in response to active forces generated through magnetic nano-pulling. Cell Reports, 2022 pdf


  13. Setty et al. Sexually dimorphic architecture and function of a mechanosensory circuit in C. elegans. Nature Communications, 2022 pdf

  14. Krieg, M et al. Mechanical Body-Brain Interactions in C elegans. Current Opinion in Neurobiology, 2022, pdf


  15. Porta-de-la-Riva, M. et al. Deploying photon for communication within neuronal networks. BioRxiv, 2021  BioRxiv

  16. Catala-Castro, F. et al. Direct force measurements of subcellular mechanics in confinement using optical tweezers, JoVE, 2021, pdf


  17. a) Das, R. et al. An asymmetric mechanical code ciphers curvature dependent proprioceptor activity, Science Advances, 2021 pdf
    b) Mechanical Stretch Inhibition Sensitizes Proprioceptors to
    Compressive Stresses, bioRxiv, 2021


  18. Venturini et al. The nucleus measures shape deformation for cellular proprioception and regulates adaptive morphodynamics; Science, 370, 2020 Venturini


  19. He et al. Cortical anchoring of the microtubule cytoskeleton is essential for neuron polarity; eLife, 2020.pdf


  20. He et al. Direction Selectivity in Drosophila Proprioceptors Requires the Mechanosensory Channel Tmc, Current Biology, 2019, 29, 1–12 pdf


     

  21. R. Das, S Wieser, M Krieg, Neuronal stretch reception – making sense of the mechanosense, Experimental Cell Research – special issue Mechanotransduction, pdf


     

  22. G Cabré, A Garrido-Charles, M Moreno, M Bosch, M Porta de la Riva, M Krieg, M Gascón-Moya, N Camarero, R Gelabert, J M. Lluch, F Busqué, J Hernando, P Gorostiza, R Alibés Rationally designed azobenzene photoswitches for efficient two-photon neuronal excitation Nature Communications, (2019) 10:907 pdf


     

  23. M Krieg, G. Fläschner, D. Alsteens, B. M. Gaub, W.H. Roos, G. J. L. Wuite, H. E. Gaub, C. Gerber, Y. F. Dufrene, D.J. Muller Atomic force microscopy-based mechanobiology Nature Reviews Physics, 1, 2019 Cover pdf


     

  24. H. Fehlauer, A Nekimken, A Kim, B.L. Pruitt‡, M.B. Goodman‡, M.Krieg‡ Using a Microfluidics Device for Mechanical Stimulation and High Resolution Imaging of C. elegans. J Vis Exp. 2018 Feb 19;(132). doi: 10.3791/56530 pdf


  25. A Nekimken, H. Fehlauer, A Kim, S.N. Manosalvas-Kjono, P. Ladpli, F. Menon, D. Gopisetty, V Sanchez, M.B. Goodman‡, B.L. Pruitt‡, M.Krieg‡ Pneumatic stimulation of C. elegans mechanoreceptor neurons in a microfluidic trap Lab-on-a-Chip 17, 1116?1127, 2017 ‡ corresponding author pdfGraphicalAbstract_v1-01

  26. M.Krieg, J. Stuehmer, J.C. Cueva, R. Fetter, K. Spilker, D. Cremers, K. Shen, A.R. Dunn, M.B. Goodman Genetic Defects in -spectrin and tau Sensitize C. elegans Axons to Movement-induced Damage via Torque-tension Coupling eLife, 6 (2010), e20172 2017 pdf
    fig-11-01

  27. D Lockhead, E.M. Schwarz, R. O’Hagan, S. Bellotti, M.Krieg, M.M. Barr, A.R. Dunn, P.W. Sternberg, M.B.Goodman. The tubulin repertoire of C. elegans sensory neurons and its context-dependent role in process outgrowth Molecular Biology of the Cell; 2016 pdf
    lockhead-01


  28. S. Katta§, M.Krieg§, M.B.Goodman. Feeling force: Physical and Physiological Principles Enabling Sensory Mechanotransduction Annual Review Cell and Developmental Biology, 31, 347-371 2015 § shared first author pdf
    katta1-01

  29. J. Chai, A. Hamilton, M. Krieg, CD. Buckley, IH Riedel-Kruse, A Force Balance explains local and global cell movements during early zebrafish development. Biophysical Journal 2015 (109) 407-414. pdf
    chai


  30. M. Kelley§, J. Yochem§, M. Krieg§, A. Calixto, M. Chalfie, M. B. Goodman, A. Kuzmanov, M. Heiman, S. Shaham, A. Frand, V. Meli, D. S. Fay A fibrillin-like protein in C. elegans is required for resistance to biomechanical forces during embryonic development elife, 2015; § shared first author pdf
    Figure-FRET-V5-01


  31. M. Krieg, A.R. Dunn, M.B. Goodman Mechanical Systems Biology of C elegans touch sensation BioEssays, 2015 Mar;37(3):335-44. doi: 10.1002/bies.201400154. corresponding author
    pdf

    pathway

    Here, we review empirical and theoretical studies of how the extracellular matrix (ECM), cytoskeleton and the plasma membrane transmit mechanical force, and discuss how these concepts apply to the sense of touch.

     
  32. R. Schubert, N. Strohmeyer, M. Bharadwaj, S. P. Ramanathan, M. Krieg, J. Friedrichs, C. M. Franz, D. J. Muller Assay for characterizing the recovery of vertebrate cells for adhesion measurements by single-cell force spectroscopy. FEBS Letters, 2014 Oct 1;588(19):3639-48. doi: 10.1016/j.febslet.2014.06.012. pdf
    webpic
    We always left cells to recover before adhesion measurements with the AFM. Here is why. Rajib and Nico characterized the recovery time of fibroblast and HeLa cells after dissociation from their culture dish.

  33. M. Krieg, A. R. Dunn, M. B. Goodman. β-Spectrin and the Mechanical Control of the Sense of Touch. Nat Cell Biol, 16(3), 22433. doi:10.1038/ncb2915, 2014 Cover pdf

    largecover
    Surprise: Spectrin is important. Featured by NIH: http://www.ninds.nih.gov/news_and_events/news_articles/news_article_touch_05162014.htm

     
  34. V. Vazques, M. Krieg, D. Lockhead, M. B. Goodman. Polyunsaturated Fatty Acid-Containing
    Phospholipids Enhance Neuronal Cell Mechanics and Touch in C. elegans. Cell Reports, doi:10.1016/j.celrep.2013.12.012, 2013 pdf
    webpicIn essence,  physical properties of lipid bilayers are crucial for ion channel function.

     
  35. B. Strilic, J. Eglinger, M. Krieg, P. Babal, D. J. Müller, E. Lammert. Blood vessel lumen
    formation via electrostatic repulsion. Curr Biol, 20(22):2003–2009, 2010 pdf

    strilicweb
    Cells repel each other using a negatively charged surface coat to make space for interstitial fluid.

  36. A. Diz-Munoz§, M. Krieg§,‡, M. Bergert, I. Ibarlucea-Benitez, D. Müller, E. Paluch‡, and C. P. Heisenberg‡. Membrane-to-cortex attachment controls bleb formation and migration in germlayer progenitors. PLOS Biol, 8(11): e100054, 2010 § shared first author, ‡ corresponding
    author  pdf

    dynamic

    As simple as this: Membrane tension influence migration by tuning formation of cell protrusion. Lowering membrane tension by knocking down membrane-csk attachment proteins such as ezrin or myosin 1, causes abberant blebbing and slower movement of the perturbed cells.

     
  37. M. Köppen, P. Oteiza, M. Krieg, S. Preibisch, C. Farias, C. Melo, E. Pulgar, D. Müller, M. Tada, S. Hartel, C. P. Heisenberg and M. L. Concha. Planar Cell Polarity signalling coordinates epithelial organ formation by regulating cell adhesion properties in progenitor cells. Development, 137(20):3459–3469, 2010pdf

    webpic
    Kupffers vesicle determines left-right asymmetry in developing zebrafish embryos. We used fluorescent activated cell sorting to sort gfp-expressing forerunner cells, progenitors of the KV, and measure their adhesive properties to one another. A reduction in adhesion correlates with perturbed KV function and defects in heart development.

  38. Y. Arboleda-Estudillo, M. Krieg, J. Stuhmer, N. A. Licata, D. J. Muller, and C. P. Heisenberg. Movement directionality in collective migration of germ layer progenitors. Curr Biol, 20(2):161–169, 2010pdf
    webpic

    How does migration of embryonic progenitor cells in 3D depend on adhesive properties? We used SCFS to measure the adhesive force and show that a reduction in adhesion correlates with a loss of movement directionality of developing mesodermal cells. We propose that mesendodermal cells migrate as a collective and that E-cadherin is needed to `feel’ neighbouring cells.

  39. D. J. Muller, M. Krieg, D. Alsteens, and Y. F. Dufrene. New frontiers in atomic force microscopy: analyzing interactions from single-molecules to cells. Curr Opin Biotechnol, 20(1):4–13, 2009.pdfwebpic
    Yet another review article about SCFS in cell biology.

  40. M. Krieg, J. Helenius, C. P. Heisenberg, and D. J. Muller. A bond for a lifetime: employing membrane nanotubes from living cells to determine receptor-ligand kinetics. Angew Chem Int Ed Engl, 7(50):9775–7, 2008. pdf
    webpic
    Here we used membrane tethers pulled from living cells to measure binding kinetics of mannose-ConA bond. Due to membrane tension, a constant force acts on the bond that couples the cell membrane to the tip of an AFM cantilever. By modulating the membrane tension, and varying the pulling speed, we could adjust the force on this bond. The unbinding kinetics nicely followed the Bell model of force accelerated bond dissociation.

  41. M. Krieg, Y. Arboleda-Estudillo, P. H. Puech, J. Kafer, F. Graner, D. J. Muller, and C. P. Heisenberg. Tensile forces govern germ-layer organization in zebrafish. Nat Cell Biol, 10(4):429–36, 2008. Cover, news&views pdf

    largecover

     

    We used biochemical and biophysical tools to understand the role of adhesive and mechanical forces during germlayer progenitor sorting in zebrafish. Specifically, we found that hierarchiy in cortex tension predicts the spatial organization of organ progenitor during gastrulation.

  42. F. Ulrich§, M. Krieg§, E. M. Schotz§, V. Link, I. Castanon, V. Schnabel, A. Taubenberger, D. Muller, P. H. Puech, and C. P. Heisenberg. Wnt11 functions in gastrulation by controlling cell cohesion through rab5c and e-cadherin. Dev Cell, 9(4):555–64, 2005. § shared first author pdf
    figure_3

    Here we showed that wnt11, a signaling molecule of the non-canonical wnt pathway regulates adhesion to e-cadherin by rab-5 mediated endocytosis. The featured image shows sequential images of a cohering cell-triplet. Using SCFS, we measured cadherin-mediated adhesion down to the level of a single molecule. The article was featured in Nature Reviews MCB, Vol. 6 No 11, 2005

  43. P. H. Puech, A. Taubenberger, F. Ulrich, M. Krieg, D. J. Muller, and C. P. Heisenberg. Measuring cell adhesion forces of primary gastrulating cells from zebrafish using atomic force microscopy. J Cell Sci, 118(Pt 18):4199–206, 2005. pdf
    puech2005The first application of single cell force spectroscopy in the Muller Lab. What a start of a glorious time! We could show that the non-canonical wnt pathway influence cell adhesion to fibronectin – a surprising finding that was a featured article of the JCS issue. featured-pdf

  44. A. Kedrov, M. Krieg, C. Ziegler, W. Kuhlbrandt, and D. J. Muller. Locating ligand binding and activation of a single antiporter. EMBO Rep, 6(7):668–74, 2005. pdfkedrov2005

    Here we used Atomic Force Microscopy based single molecule force spectroscopy to measure the forces that stabilize the ligand binding site of a sodium-proton ion channel.